This function sends the data in a data frame to a table on the server. Either a new table is created, or the data is appended to an existing table.

insertTable(
  connection,
  databaseSchema = NULL,
  tableName,
  data,
  dropTableIfExists = TRUE,
  createTable = TRUE,
  tempTable = FALSE,
  oracleTempSchema = NULL,
  tempEmulationSchema = getOption("sqlRenderTempEmulationSchema"),
  bulkLoad = Sys.getenv("DATABASE_CONNECTOR_BULK_UPLOAD"),
  useMppBulkLoad = Sys.getenv("USE_MPP_BULK_LOAD"),
  progressBar = FALSE,
  camelCaseToSnakeCase = FALSE
)

Arguments

connection

The connection to the database server created using either connect() or DBI::dbConnect().

databaseSchema

The name of the database schema. See details for platform-specific details.

tableName

The name of the table where the data should be inserted.

data

The data frame containing the data to be inserted.

dropTableIfExists

Drop the table if the table already exists before writing?

createTable

Create a new table? If false, will append to existing table.

tempTable

Should the table created as a temp table?

oracleTempSchema

DEPRECATED: use tempEmulationSchema instead.

tempEmulationSchema

Some database platforms like Oracle and Impala do not truly support temp tables. To emulate temp tables, provide a schema with write privileges where temp tables can be created.

bulkLoad

If using Redshift, PDW, Hive or Postgres, use more performant bulk loading techniques. Does not work for temp tables (except for HIVE). See Details for requirements for the various platforms.

useMppBulkLoad

DEPRECATED. Use bulkLoad instead.

progressBar

Show a progress bar when uploading?

camelCaseToSnakeCase

If TRUE, the data frame column names are assumed to use camelCase and are converted to snake_case before uploading.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL Server and PDW: The databaseSchema schema should specify both the database and the schema, e.g. 'my_database.dbo'. Impala: the databaseSchema should specify the database. Oracle: The databaseSchema should specify the Oracle 'user'. All other : The databaseSchema should specify the schema.

This function sends the data in a data frame to a table on the server. Either a new table is created, or the data is appended to an existing table. NA values are inserted as null values in the database.

Bulk uploading:

Redshift: The MPP bulk loading relies upon the CloudyR S3 library to test a connection to an S3 bucket using AWS S3 credentials. Credentials are configured directly into the System Environment using the following keys: Sys.setenv("AWS_ACCESS_KEY_ID" = "some_access_key_id", "AWS_SECRET_ACCESS_KEY" = "some_secret_access_key", "AWS_DEFAULT_REGION" = "some_aws_region", "AWS_BUCKET_NAME" = "some_bucket_name", "AWS_OBJECT_KEY" = "some_object_key", "AWS_SSE_TYPE" = "server_side_encryption_type").

PDW: The MPP bulk loading relies upon the client having a Windows OS and the DWLoader exe installed, and the following permissions granted: –Grant BULK Load permissions - needed at a server level USE master; GRANT ADMINISTER BULK OPERATIONS TO user; –Grant Staging database permissions - we will use the user db. USE scratch; EXEC sp_addrolemember 'db_ddladmin', user; Set the R environment variable DWLOADER_PATH to the location of the binary.

PostgreSQL: Uses the 'psql' executable to upload. Set the POSTGRES_PATH environment variable to the Postgres binary path, e.g. 'C:/Program Files/PostgreSQL/11/bin' on Windows or '/Library/PostgreSQL/16/bin' on MacOs.

Examples

if (FALSE) { # \dontrun{
connectionDetails <- createConnectionDetails(
  dbms = "mysql",
  server = "localhost",
  user = "root",
  password = "blah"
)
conn <- connect(connectionDetails)
data <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))
insertTable(conn, "my_schema", "my_table", data)
disconnect(conn)

## bulk data insert with Redshift or PDW
connectionDetails <- createConnectionDetails(
  dbms = "redshift",
  server = "localhost",
  user = "root",
  password = "blah",
  schema = "cdm_v5"
)
conn <- connect(connectionDetails)
data <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))
insertTable(
  connection = connection,
  databaseSchema = "scratch",
  tableName = "somedata",
  data = data,
  dropTableIfExists = TRUE,
  createTable = TRUE,
  tempTable = FALSE,
  bulkLoad = TRUE
) # or, Sys.setenv("DATABASE_CONNECTOR_BULK_UPLOAD" = TRUE)
} # }