Creates settings for a Multilayer perceptron model

setMultiLayerPerceptron(
  numLayers = c(1:8),
  sizeHidden = c(2^(6:9)),
  dropout = c(seq(0, 0.3, 0.05)),
  sizeEmbedding = c(2^(6:9)),
  estimatorSettings = setEstimator(learningRate = "auto", weightDecay = c(1e-06, 0.001),
    batchSize = 1024, epochs = 30, device = "cpu"),
  hyperParamSearch = "random",
  randomSample = 100,
  randomSampleSeed = NULL
)

Arguments

numLayers

Number of layers in network, default: 1:8

sizeHidden

Amount of neurons in each default layer, default: 2^(6:9) (64 to 512)

dropout

How much dropout to apply after first linear, default: seq(0, 0.3, 0.05)

sizeEmbedding

Size of embedding default: 2^(6:9) (64 to 512)

estimatorSettings

settings of Estimator created with `setEstimator`

hyperParamSearch

Which kind of hyperparameter search to use random sampling or exhaustive grid search. default: 'random'

randomSample

How many random samples from hyperparameter space to use

randomSampleSeed

Random seed to sample hyperparameter combinations

Details

Model architecture