Creates settings for a ResNet model

setResNet(
  numLayers = c(1:8),
  sizeHidden = c(2^(6:10)),
  hiddenFactor = c(1:4),
  residualDropout = c(seq(0, 0.5, 0.05)),
  hiddenDropout = c(seq(0, 0.5, 0.05)),
  sizeEmbedding = c(2^(6:9)),
  estimatorSettings = setEstimator(learningRate = "auto", weightDecay = c(1e-06, 0.001),
    device = "cpu", batchSize = 1024, epochs = 30, seed = NULL),
  hyperParamSearch = "random",
  randomSample = 100,
  randomSampleSeed = NULL
)

Arguments

numLayers

Number of layers in network, default: 1:16

sizeHidden

Amount of neurons in each default layer, default: 2^(6:10) (64 to 1024)

hiddenFactor

How much to grow the amount of neurons in each ResLayer, default: 1:4

residualDropout

How much dropout to apply after last linear layer in ResLayer, default: seq(0, 0.3, 0.05)

hiddenDropout

How much dropout to apply after first linear layer in ResLayer, default: seq(0, 0.3, 0.05)

sizeEmbedding

Size of embedding layer, default: 2^(6:9) '(64 to 512)

estimatorSettings

created with “`setEstimator“`

hyperParamSearch

Which kind of hyperparameter search to use random sampling or exhaustive grid search. default: 'random'

randomSample

How many random samples from hyperparameter space to use

randomSampleSeed

Random seed to sample hyperparameter combinations

Details

Model architecture from by https://arxiv.org/abs/2106.11959