Skip to contents

Plot summariseMeasurementTiming results.

Usage

plotMeasurementTimings(
  result,
  y = "time",
  plotType = "boxplot",
  timeScale = "days",
  facet = visOmopResults::strataColumns(result),
  colour = c("cdm_name", "codelist_name"),
  style = NULL
)

Arguments

result

A summarised_result object.

y

Variable to plot on y axis, it can be "time" or measurements_per_subject".

plotType

Type of plot, either "boxplot" or "densityplot".

timeScale

Time scale to show, it can be "days" or "years".

facet

Columns to facet by. See options with `visOmopResults::plotColumns(result)`. Formula input is also allowed to specify rows and columns.

colour

Columns to color by. See options with `visOmopResults::plotColumns(result)`.

style

Pre-defined style to apply: "default" or "darwin" - the latter just for gt and flextable. If NULL the "default" style is used.

Value

A ggplot.

Examples

# \donttest{
library(MeasurementDiagnostics)
cdm <- mockMeasurementDiagnostics()
#> Warning: ! 2 casted column in measurement as do not match expected column type:
#>  `value_as_concept_id` from numeric to integer
#>  `unit_concept_id` from numeric to integer
result <- summariseMeasurementUse(
              cdm = cdm,
              codes = list("test_codelist" = c(3001467L, 45875977L))
           )
#> → Getting measurement records based on 2 concepts.
#> → Subsetting records to the subjects and timing of interest.
#> → Getting time between records per person.
#> → Summarising results - value as number.
#> → Summarising results - value as concept.
#> → Binding all diagnostic results.
result |>
  dplyr::filter(variable_name == "time") |>
  plotMeasurementTimings()
CDMConnector::cdmDisconnect(cdm)
# }