Create a parameter object for the function runPlp
createRunPlpAnalysesArgs.Rd
Create a parameter object for the function runPlp
Usage
createRunPlpAnalysesArgs(
outcomeId = NULL,
splitSettings = PatientLevelPrediction::createDefaultSplitSetting(),
sampleSettings = PatientLevelPrediction::createSampleSettings(),
featureEngineeringSettings = PatientLevelPrediction::createFeatureEngineeringSettings(),
preprocessSettings = PatientLevelPrediction::createPreprocessSettings(),
modelSettings = PatientLevelPrediction::setLassoLogisticRegression(),
logSettings = PatientLevelPrediction::createLogSettings(),
executeSettings = PatientLevelPrediction::createDefaultExecuteSettings(),
matchingSettings = CohortMethod::createMatchOnPsArgs(),
timepoint = NULL
)
Arguments
- outcomeId
The outcomeId for the prediction.
- splitSettings
An object of type splitSettings that specifies how to split the data into train/validation/test. The default settings can be created using
createDefaultSplitSetting
- sampleSettings
An object of type
sampleSettings
that specifies any under/over sampling to be done. Should be created withcreateSampleSettings
- featureEngineeringSettings
An object of
featureEngineeringSettings
specifying any feature engineering to be learned (using the train data)- preprocessSettings
An object of
preprocessSettings
. This setting specifies the minimum fraction of target population who must have a covariate for it to be included in the model training and whether to normalise the covariates before training. Should be created withcreatePreprocessSettings
.- modelSettings
An object of class
modelSettings
.- logSettings
An object of
logSettings
created usingcreateLogSettings
specifying how the logging is done.- executeSettings
An object of type
executeSettings
specifying which parts of the analysis to run. Should be created usingcreateExecuteSettings
.- matchingSettings
The settings for the construction of the population on which the prediction model will be developed.
- timepoint
The timepoint to predict risk (survival models only)