Predict risk with a given plpModel containing a generalized linear model.
Arguments
- plpModel
An object of type
plpModel
- a patient level prediction model- data
An object of type
plpData
- the patient level prediction data extracted from the CDM.- cohort
The population dataframe created using
createStudyPopulation
who will have their risks predicted or a cohort without the outcome known
Examples
coefficients <- data.frame(
covariateId = c(1002),
coefficient = c(0.05))
model <- createGlmModel(coefficients, intercept = -2.5)
data("simulationProfile")
plpData <- simulatePlpData(simulationProfile, n=50)
#> Generating covariates
#> Generating cohorts
#> Generating outcomes
prediction <- predictGlm(model, plpData, plpData$cohorts)
#> predict risk probabilities using predictGlm
#> Prediction took 0.0897 secs
# see the predicted risk values
head(prediction)
#> rowId subjectId targetId cohortStartDate daysFromObsStart daysToCohortEnd
#> 1 1 2e+10 1 2012-07-18 586 710
#> 2 2 2e+10 1 2008-01-06 10 791
#> 3 3 2e+10 1 2012-08-15 833 981
#> 4 4 2e+10 1 2011-06-20 505 129
#> 5 5 2e+10 1 2010-06-22 942 726
#> 6 6 2e+10 1 2007-09-17 733 580
#> daysToObsEnd ageYear gender value
#> 1 1588 39 8507 0.3658644
#> 2 930 39 8532 0.3658644
#> 3 1429 42 8507 0.4013123
#> 4 370 33 8532 0.2994329
#> 5 1296 42 8507 0.4013123
#> 6 1294 39 8507 0.3658644