Create a cluster of nodes for parallel computation
makeCluster(
numberOfThreads,
singleThreadToMain = TRUE,
setAndromedaTempFolder = TRUE,
setAndromedaMemoryLimit = TRUE
)
Number of parallel threads.
If numberOfThreads
is 1, should we fall back to running the
process in the main thread?
When TRUE, the andromedaTempFolder option will be copied to each thread.
When TRUE, the andromedaMemoryLimit option will be set in each thread to be either the global andromedaMemoryLimit / numberOfThreads or 75 percent of the system memory / number of threads.
An object representing the cluster.
fun <- function(x) {
return (x^2)
}
cluster <- makeCluster(numberOfThreads = 3)
clusterApply(cluster, 1:10, fun)
#> | | | 0% | |======= | 10% | |============== | 20% | |===================== | 30% | |============================ | 40% | |=================================== | 50% | |========================================== | 60% | |================================================= | 70% | |======================================================== | 80% | |=============================================================== | 90% | |======================================================================| 100%
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 4
#>
#> [[3]]
#> [1] 9
#>
#> [[4]]
#> [1] 16
#>
#> [[5]]
#> [1] 25
#>
#> [[6]]
#> [1] 36
#>
#> [[7]]
#> [1] 49
#>
#> [[8]]
#> [1] 64
#>
#> [[9]]
#> [1] 81
#>
#> [[10]]
#> [1] 100
#>
stopCluster(cluster)