Meta-analysis with the HADES EvidenceSynthesis Package
Source:R/Module-EvidenceSynthesis.R
EvidenceSynthesisModule.RdModule for for combining causal effect estimates and study diagnostics across multiple data sites in a distributed study. This includes functions for performing meta-analysis and forest plots
Super class
Strategus::StrategusModule -> EvidenceSynthesisModule
Methods
Method execute()
Executes the EvidenceSynthesis package
Usage
EvidenceSynthesisModule$execute(
connectionDetails,
analysisSpecifications,
executionSettings
)Arguments
connectionDetailsAn object of class
connectionDetailsas created by theDatabaseConnector::createConnectionDetails()function.analysisSpecificationsAn object of type
AnalysisSpecificationsas created bycreateEmptyAnalysisSpecificiations().analysisSpecificationsAn object of type
AnalysisSpecificationsas created bycreateEmptyAnalysisSpecificiations().executionSettingsAn object of type
ExecutionSettingsas created bycreateCdmExecutionSettings()orcreateResultsExecutionSettings().
Method createResultsDataModel()
Create the results data model for the module
Usage
EvidenceSynthesisModule$createResultsDataModel(
resultsConnectionDetails,
resultsDatabaseSchema,
tablePrefix = ""
)Arguments
resultsConnectionDetailsThe connection details to the results database which is an object of class
connectionDetailsas created by theDatabaseConnector::createConnectionDetails()function.resultsConnectionDetailsThe connection details to the results database which is an object of class
connectionDetailsas created by theDatabaseConnector::createConnectionDetails()function.resultsDatabaseSchemaThe schema in the results database that holds the results data model.
tablePrefixA prefix to apply to the database table names (optional).
tablePrefixA prefix to apply to the database table names (optional).
Method uploadResults()
Upload the results for the module
Usage
EvidenceSynthesisModule$uploadResults(
resultsConnectionDetails,
analysisSpecifications,
resultsDataModelSettings
)Arguments
resultsConnectionDetailsThe connection details to the results database which is an object of class
connectionDetailsas created by theDatabaseConnector::createConnectionDetails()function.resultsConnectionDetailsThe connection details to the results database which is an object of class
connectionDetailsas created by theDatabaseConnector::createConnectionDetails()function.analysisSpecificationsAn object of type
AnalysisSpecificationsas created bycreateEmptyAnalysisSpecificiations().analysisSpecificationsAn object of type
AnalysisSpecificationsas created bycreateEmptyAnalysisSpecificiations().resultsDataModelSettingsThe results data model settings as created using [@seealso
createResultsDataModelSettings()]
Method createEvidenceSynthesisSource()
Usage
EvidenceSynthesisModule$createEvidenceSynthesisSource(
sourceMethod = "CohortMethod",
databaseIds = NULL,
analysisIds = NULL,
likelihoodApproximation = "grid with gradients"
)Arguments
sourceMethodThe source method generating the estimates to synthesize. Can be "CohortMethod" or "SelfControlledCaseSeries"
databaseIdsThe database IDs to include. Use
databaseIds = NULLto include all database IDs.analysisIdsThe source method analysis IDs to include. Use
analysisIds = NULLto include all analysis IDs.likelihoodApproximationThe type of likelihood approximation. Can be "adaptive grid", "normal", or "grid with gradients".
Method createRandomEffectsMetaAnalysis()
Usage
EvidenceSynthesisModule$createRandomEffectsMetaAnalysis(
alpha = 0.05,
evidenceSynthesisAnalysisId = 1,
evidenceSynthesisDescription = "Random-effects",
evidenceSynthesisSource = NULL,
controlType = "outcome"
)Method createFixedEffectsMetaAnalysis()
Usage
EvidenceSynthesisModule$createFixedEffectsMetaAnalysis(
alpha = 0.05,
evidenceSynthesisAnalysisId = 1,
evidenceSynthesisDescription = "Fixed-effects",
evidenceSynthesisSource = NULL,
controlType = "outcome"
)Method createBayesianMetaAnalysis()
Usage
EvidenceSynthesisModule$createBayesianMetaAnalysis(
chainLength = 1100000,
burnIn = 1e+05,
subSampleFrequency = 100,
priorSd = c(2, 0.5),
alpha = 0.05,
robust = FALSE,
df = 4,
seed = 1,
evidenceSynthesisAnalysisId = 1,
evidenceSynthesisDescription = "Bayesian random-effects",
evidenceSynthesisSource = NULL,
controlType = "outcome"
)Arguments
chainLengthNumber of MCMC iterations.
burnInNumber of MCMC iterations to consider as burn in.
subSampleFrequencySubsample frequency for the MCMC.
priorSdA two-dimensional vector with the standard deviation of the prior for mu and tau, respectively.
alphaThe alpha (expected type I error) used for the credible intervals.
robustWhether or not to use a t-distribution model; default: FALSE.
dfDegrees of freedom for the t-model, only used if robust is TRUE.
seedThe seed for the random number generator.
evidenceSynthesisAnalysisIddescription
evidenceSynthesisDescriptiondescription
evidenceSynthesisSourcedescription
controlTypedescription Create EvidenceSynthesis diagnostics thresholds
Method createEsDiagnosticThresholds()
Threshold used to determine if we pass or fail diagnostics.
Usage
EvidenceSynthesisModule$createEsDiagnosticThresholds(
mdrrThreshold = 10,
easeThreshold = 0.25,
i2Threshold = 0.4,
tauThreshold = log(2)
)Arguments
mdrrThresholdWhat is the maximum allowed minimum detectable relative risk (MDRR)?
easeThresholdWhat is the maximum allowed expected absolute systematic error (EASE).
i2ThresholdWhat is the maximum allowed I^2 (measure of between-database heterogeneity in random-effects models)?
tauThresholdWhat is the maximum allowed tau (measure of between-database heterogeneity in Bayesian random-effects models)?
Method createModuleSpecifications()
Creates the module Specifications
Usage
EvidenceSynthesisModule$createModuleSpecifications(
evidenceSynthesisAnalysisList,
esDiagnosticThresholds = self$createEsDiagnosticThresholds()
)Arguments
evidenceSynthesisAnalysisListA list of objects of type
EvidenceSynthesisAnalysisas generated by either theEvidenceSynthesisModule$createFixedEffectsMetaAnalysis()orEvidenceSynthesisModule$createBayesianMetaAnalysis()function.esDiagnosticThresholdsAn object of type
EsDiagnosticThresholdsas generated by theEvidenceSynthesisModule$createEsDiagnosticThresholds()function.