IterativeHardThresholding
is part of the HADES.
IterativeHardThresholding
is an R
package
for performing L_0-based regressions using Cyclops
library(Cyclops)
library(IterativeHardThresholding)
library(survival)
## data dimension
p <- 20 # number of covariates
n <- 300 # sample size
## Cox model parameters
true.beta <- c(1, 0.1, 0, -1, 1, rep(0, p - 5))
## simulate data from an exponential model
x <- matrix(rnorm(p * n, mean = 0, sd = 1), ncol = p)
ti <- rweibull(n, shape = 1, scale = exp(-x%*%true.beta))
ui <- runif(n, 0, 10) # Controls censoring
ci <- rweibull(n, shape = 1, scale = ui * exp(-x%*%true.beta))
survtime <- pmin(ti, ci)
delta <- ti == survtime; mean(delta)
cyclopsData <- createCyclopsData(Surv(survtime, delta) ~ x, modelType = "cox")
ihtPrior <- createIhtPrior(K = 3, penalty = "bic")
cyclopsFit <- fitCyclopsModel(cyclopsData,
prior = ihtPrior)
coef(cyclopsFit)
library(Cyclops)
library(IterativeHardThresholding)
## data dimension
p <- 20 # number of covariates
n <- 300 # sample size
## logistic model parameters
itcpt <- 0.2 # intercept
true.beta <- c(1, 0.3, 0, -1, 1, rep(0, p - 5))
## simulate data from logistic model
x <- matrix(rnorm(p * n, mean = 0, sd = 1), ncol = p)
y <- rbinom(n, 1, 1 / (1 + exp(-itcpt - x%*%true.beta)))
# fit BAR model
cyclopsData <- createCyclopsData(y ~ x, modelType = "lr")
ihtPrior <- createIhtPrior(K = 3, penalty = "bic", exclude = c("(Intercept)"))
cyclopsFit <- fitCyclopsModel(cyclopsData,
prior = ihtPrior)
coef(cyclopsFit)
IterativeHardThresholding
:
install.packages("Cyclops")
install.packages("IterativeHardThresholding")
library(IterativeHardThresholding)
cyclopsData <- createCyclopsData(formula, modelType = "modelType") ## TODO: Update
ihtPrior <- createIhtPrior(K = 5, penalty = "bic")
cyclopsFit <- fitCyclopsModel(cyclopsData, prior = ihtPrior)
coef(cyclopsFit) #Extract coefficients