Skip to contents

Create a visual table from a summariseMissingData() result

Usage

tableMissingData(result, type = NULL, style = NULL)

Arguments

result

A summarised_result object (output of summariseMissingData()).

type

Character string specifying the desired output table format. See visOmopResults::tableType() for supported table types. If type = NULL, global options (set via visOmopResults::setGlobalTableOptions()) will be used if available; otherwise, a default 'gt' table is created.

style

Defines the visual formatting of the table. This argument can be provided in one of the following ways:

  1. Pre-defined style: Use the name of a built-in style (e.g., "darwin"). See visOmopResults::tableStyle() for available options.

  2. YAML file path: Provide the path to an existing .yml file defining a new style.

  3. List of custome R code: Supply a block of custom R code or a named list describing styles for each table section. This code must be specific to the selected table type.

If style = NULL, the function will use global options (seevisOmopResults::setGlobalTableOptions()) or a _brand.yml file (if found); otherwise, the default style is applied.

Value

A formatted table visualisation.

Examples

# \donttest{
library(OmopSketch)
library(omock)

cdm <- mockCdmFromDataset(datasetName = "GiBleed", source = "duckdb")
#>  Reading GiBleed tables.
#>  Adding drug_strength table.
#>  Creating local <cdm_reference> object.
#>  Inserting <cdm_reference> into duckdb.

result <- summariseMissingData(
  cdm = cdm,
  omopTableName = c("condition_occurrence", "visit_occurrence")
)
#> The person table has ≤ 1e+05 subjects; skipping sampling of the CDM.

tableMissingData(result = result)
Summary of missingness in condition_occurrence, visit_occurrence tables
Column name Estimate name
Database name
GiBleed
visit_occurrence
admitting_source_concept_id N missing data (%) 0 (0.00%)
N zeros (%) 1,037 (100.00%)
admitting_source_value N missing data (%) 1,037 (100.00%)
care_site_id N missing data (%) 1,037 (100.00%)
N zeros (%) 0 (0.00%)
discharge_to_concept_id N missing data (%) 0 (0.00%)
N zeros (%) 1,037 (100.00%)
discharge_to_source_value N missing data (%) 1,037 (100.00%)
person_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
preceding_visit_occurrence_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
provider_id N missing data (%) 1,037 (100.00%)
N zeros (%) 0 (0.00%)
visit_concept_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
visit_end_date N missing data (%) 0 (0.00%)
visit_end_datetime N missing data (%) 0 (0.00%)
visit_occurrence_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
visit_source_concept_id N missing data (%) 0 (0.00%)
N zeros (%) 1,037 (100.00%)
visit_source_value N missing data (%) 0 (0.00%)
visit_start_date N missing data (%) 0 (0.00%)
visit_start_datetime N missing data (%) 0 (0.00%)
visit_type_concept_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
condition_occurrence
condition_concept_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
condition_end_date N missing data (%) 8,652 (13.24%)
condition_end_datetime N missing data (%) 8,652 (13.24%)
condition_occurrence_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
condition_source_concept_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
condition_source_value N missing data (%) 0 (0.00%)
condition_start_date N missing data (%) 0 (0.00%)
condition_start_datetime N missing data (%) 0 (0.00%)
condition_status_concept_id N missing data (%) 0 (0.00%)
N zeros (%) 65,332 (100.00%)
condition_status_source_value N missing data (%) 65,332 (100.00%)
condition_type_concept_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
person_id N missing data (%) 0 (0.00%)
N zeros (%) 0 (0.00%)
provider_id N missing data (%) 65,332 (100.00%)
N zeros (%) 0 (0.00%)
stop_reason N missing data (%) 65,332 (100.00%)
visit_detail_id N missing data (%) 0 (0.00%)
N zeros (%) 65,332 (100.00%)
visit_occurrence_id N missing data (%) 64 (0.10%)
N zeros (%) 0 (0.00%)
cdmDisconnect(cdm = cdm) # }