R/BayesianSynthesis.R
approximateHierarchicalNormalPosterior.Rd
Approximate a Bayesian posterior from a set ofCyclops
likelihood profiles
under a hierarchical normal model
using the Markov chain Monte Carlo engine BEAST.
approximateHierarchicalNormalPosterior(
likelihoodProfiles,
chainLength = 1100000,
burnIn = 1e+05,
subSampleFrequency = 100,
effectPriorMean = 0,
effectPriorSd = 0.5,
nu0 = 1,
sigma0 = 1,
effectStartingValue = 0,
precisionStartingValue = 1,
seed = 1
)
List of grid likelihoods profiled with Cyclops
.
Number of MCMC iterations.
Number of MCMC iterations to consider as burn in.
Subsample frequency for the MCMC.
Prior mean for global parameter
Prior standard deviation for the global parameter
Prior "sample size" for precision (with precision ~ gamma(nu0/2, nu0*sigma0/2))
Prior "variance" for precision (with precision ~ gamma(nu0/2, nu0*sigma0/2))
Initial value for global & local parameter
Initial value for the precision
Seed for the random number generator.
A data frame with the point estimates and 95% credible intervals for the the global and local parameter, as well as the global precision. Attributes of the data frame contain the MCMC trace for diagnostics.
# TBD