Approximate the likelihood function using a parametric (normal, skew-normal, or custom parametric), or grid approximation. The approximation does not reveal person-level information, and can therefore be shared among data sites. When counts are low, a normal approximation might not be appropriate.
A model fitted using the Cyclops::fitCyclopsModel() function.
The parameter in the cyclopsFit object to profile.
The type of approximation. Valid options are 'normal', 'skew normal',
'custom', 'grid', 'adaptive grid', or 'grid with gradients'.
The bounds on the effect size used to fit the approximation.
A vector of parameters of the likelihood approximation.
# Simulate some data for this example:
populations <- simulatePopulations()
cyclopsData <- Cyclops::createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
data = populations[[1]],
modelType = "cox"
)
#> 'as(<numLike>, "dgeMatrix")' is deprecated.
#> Use 'as(as(as(., "dMatrix"), "generalMatrix"), "unpackedMatrix")' instead.
#> See help("Deprecated") and help("Matrix-deprecated").
cyclopsFit <- Cyclops::fitCyclopsModel(cyclopsData)
#> Warning: BLR convergence criterion failed; coefficient may be infinite
approximation <- approximateLikelihood(cyclopsFit, "x")
approximation
#> point value derivative
#> 1 -2.3025851 -16.42905 -0.06928413
#> 2 -1.6447036 -16.49283 -0.13090344
#> 3 -0.9868222 -16.61222 -0.24271450
#> 4 -0.3289407 -16.82989 -0.43534046
#> 5 0.3289407 -17.20965 -0.73942484
#> 6 0.9868222 -17.82865 -1.15932035
#> 7 1.6447036 -18.74959 -1.64390824
#> 8 2.3025851 -19.98523 -2.10007041
# (Estimates in this example will vary due to the random simulation)