Approximate the likelihood function using a parametric (normal, skew-normal, or custom parametric), or grid approximation. The approximation does not reveal person-level information, and can therefore be shared among data sites. When counts are low, a normal approximation might not be appropriate.
A model fitted using the Cyclops::fitCyclopsModel()
function.
The parameter in the cyclopsFit
object to profile.
The type of approximation. Valid options are 'normal'
, 'skew normal'
,
'custom'
, 'grid'
, 'adaptive grid'
, or 'grid with gradients'
.
The bounds on the effect size used to fit the approximation.
A vector of parameters of the likelihood approximation.
# Simulate some data for this example:
populations <- simulatePopulations()
cyclopsData <- Cyclops::createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
data = populations[[1]],
modelType = "cox"
)
#> 'as(<numLike>, "dgeMatrix")' is deprecated.
#> Use 'as(as(as(., "dMatrix"), "generalMatrix"), "unpackedMatrix")' instead.
#> See help("Deprecated") and help("Matrix-deprecated").
cyclopsFit <- Cyclops::fitCyclopsModel(cyclopsData)
#> Warning: BLR convergence criterion failed; coefficient may be infinite
approximation <- approximateLikelihood(cyclopsFit, "x")
approximation
#> point value derivative
#> 1 -2.3025851 -16.42905 -0.06928413
#> 2 -1.6447036 -16.49283 -0.13090344
#> 3 -0.9868222 -16.61222 -0.24271450
#> 4 -0.3289407 -16.82989 -0.43534046
#> 5 0.3289407 -17.20965 -0.73942484
#> 6 0.9868222 -17.82865 -1.15932035
#> 7 1.6447036 -18.74959 -1.64390824
#> 8 2.3025851 -19.98523 -2.10007041
# (Estimates in this example will vary due to the random simulation)