Plot the empirical null distribution for multiple data sources.
plotEmpiricalNulls(
logRr,
seLogRr,
labels,
xLabel = "Relative risk",
limits = c(0.1, 10),
showCis = TRUE,
fileName = NULL
)
A numeric vector of effect estimates for the negative controls on the log scale.
The standard error of the log of the effect estimates. Hint: often the standard error = (log(lower bound 95 percent confidence interval) - l og(effect estimate))/qnorm(0.025).
A vector containing the labels for the various sources. Should be of equal length
as logRr
and seLogRr
.
The label on the x-axis: the name of the effect estimate.
The limits of the effect size axis.
Show the 95 percent confidence intervals on the null distribution and distribution parameter estimates?
Name of the file where the plot should be saved, for example 'plot.png'. See the
function ggplot2::ggsave()
for supported file formats.
A Ggplot object. Use the ggplot2::ggsave()
function to save to file.
Creates a plot showing the empirical null distributions. Distributions are shown as mean plus minus one standard deviation, as well as a distribution plot.
# Some example data:
site1 <- EmpiricalCalibration::simulateControls(n = 50, mean = 0, sd = 0.1, trueLogRr = 0)
site1$label <- "Site 1"
site2 <- EmpiricalCalibration::simulateControls(n = 50, mean = 0.1, sd = 0.2, trueLogRr = 0)
site2$label <- "Site 2"
site3 <- EmpiricalCalibration::simulateControls(n = 50, mean = 0.15, sd = 0.25, trueLogRr = 0)
site3$label <- "Site 3"
sites <- rbind(site1, site2, site3)
plotEmpiricalNulls(logRr = sites$logRr, seLogRr = sites$seLogRr, labels = sites$label)