This function extracts the covariate summary details
Usage
getPredictionCovariates(
connectionHandler,
schema,
plpTablePrefix = "plp_",
cgTablePrefix = "cg_",
databaseTable = "database_meta_data",
performanceIds = NULL,
modelDesignIds = NULL
)
Arguments
- connectionHandler
A connection handler that connects to the database and extracts sql queries. Create a connection handler via `ResultModelManager::ConnectionHandler$new()`.
- schema
The result database schema (e.g., 'main' for sqlite)
- plpTablePrefix
The prefix used for the patient level prediction results tables
- cgTablePrefix
The prefix used for the cohort generator results tables
- databaseTable
The name of the table with the database details (default 'database_meta_data')
- performanceIds
(optional) restrict to the input performanceIds
- modelDesignIds
(optional) restrict to the input modelDesignIds
Details
Specify the connectionHandler, the resultDatabaseSettings, the table of interest and (optionally) modelDesignIds/performanceIds to filter to
See also
Other Prediction:
getFullPredictionPerformances()
,
getPredictionAggregateTopPredictors()
,
getPredictionCohorts()
,
getPredictionDiagnosticTable()
,
getPredictionDiagnostics()
,
getPredictionHyperParamSearch()
,
getPredictionIntercept()
,
getPredictionLift()
,
getPredictionModelDesigns()
,
getPredictionOutcomes()
,
getPredictionPerformanceTable()
,
getPredictionPerformances()
,
getPredictionTargets()
,
getPredictionTopPredictors()
Examples
conDet <- getExampleConnectionDetails()
connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)
#> Connecting using SQLite driver
covs <- getPredictionCovariates(
connectionHandler = connectionHandler,
schema = 'main'
)