Skip to contents

Using the OhdsiReportGenerator Package

This package enables users to extract characterization, estimation and prediction results from the OHDSI results (see result model) generated via R packages such as PatientLevelPrediction, Characterization, CohortMethod and SelfControlledCaseSeries.

Example Result Database

This package provides users with an example OHDSI result database. This can be accessed via getExampleConnectionDetails() and contains the results of running a demo analysis using the Eunomia R package sample OMOP CDM data.

library(OhdsiReportGenerator)
# create a connection details object to 
connectionDetails <- getExampleConnectionDetails()

# create a connection handler to the results
library(ResultModelManager)
## Loading required package: R6
## Loading required package: DatabaseConnector
ConnectionHandler <- ResultModelManager::ConnectionHandler$new(connectionDetails)
## Connecting using SQLite driver

Extracting Cohorts

The cohort details can be extracted using the function getCohortDefinitions that requires the user to input the connection handler, schema, table prefix used by CohortGenerator (default is ‘cg_’) and target cohort ids to restrict to.

The example results are in a sqlite database and use the schema ‘main’.

cohorts <- getCohortDefinitions(
    connectionHandler = ConnectionHandler,
    schema = 'main',
    cgTablePrefix = 'cg_',
    targetIds = NULL
)

knitr::kable(
  x = cohorts %>% 
    dplyr::select(-"json", -"sqlCommand"), 
  caption = 'The data.frame extracted containing the cohort details minus the json and sqlCommand columns.'
  )
The data.frame extracted containing the cohort details minus the json and sqlCommand columns.
cohortDefinitionId cohortName description subsetParent isSubset subsetDefinitionId
1 Celecoxib NA 1 NA NA
2 Diclofenac NA 2 NA NA
3 GI bleed NA 3 NA NA
1001 Celecoxib - age 18 to 64 Age 18 to 64 NA 1 NA 1
2001 Diclofenac - age 18 to 64 Age 18 to 64 NA 2 NA 1
1002 Celecoxib - first event with 365 prior obs first event with 365 prior obs NA 1 NA 2
2002 Diclofenac - first event with 365 prior obs first event with 365 prior obs NA 2 NA 2
1003 Celecoxib - age 18 to 64 and first event with 365 prior obs Age 18 to 64, first event with 365 prior obs NA 1 NA 3
2003 Diclofenac - age 18 to 64 and first event with 365 prior obs Age 18 to 64, first event with 365 prior obs NA 2 NA 3

You can process the cohorts definitions to extract the parent cohorts and the children for each parent cohort.

if(nrow(cohorts) > 0){
processedCohorts <- processCohorts(cohorts)

knitr::kable(
  x = data.frame(
    parentId = processedCohorts$parents,
    parentName= names(processedCohorts$parents)
    ), 
  caption = 'The parent cohorts.'
  )

knitr::kable(
  x = processedCohorts$cohortList[[1]] %>% 
    dplyr::select(-"json", -"sqlCommand"),
  caption = 'The children/subset cohorts for the first parent cohort.'
  )
}
The children/subset cohorts for the first parent cohort.
cohortDefinitionId cohortName description subsetParent isSubset subsetDefinitionId
1 Celecoxib NA 1 NA NA
1001 Celecoxib - age 18 to 64 Age 18 to 64 NA 1 NA 1
1002 Celecoxib - first event with 365 prior obs first event with 365 prior obs NA 1 NA 2
1003 Celecoxib - age 18 to 64 and first event with 365 prior obs Age 18 to 64, first event with 365 prior obs NA 1 NA 3

For example, if you created a cohort corresponding to all patients exposed to drug A with an id of 1 and then created ‘children’ subset cohorts corresponding to patients exposed to drug A for indication X with an id 1001 and patients exposed to drug A aged 60+ with a cohort id 1002, then getCohortDefinition() would extract all three of these cohorts and processCohorts() would identify cohort 1 as the parent and cohorts 1,1001,1002 as the children/subset of cohort 1.

You can also extract the subset logic for a subset id:

subsets <- getCohortSubsetDefinitions(
    connectionHandler = ConnectionHandler,
    schema = 'main',
    cgTablePrefix = 'cg_'
)

knitr::kable(
  x = subsets, 
  caption = 'The subset cohort logic used in the analysis.'
  )
The subset cohort logic used in the analysis.
subsetDefinitionId json
1 {

“name”: “age 18 to 64”, “definitionId”: 1, “subsetOperators”: [ { “name”: “Age 18 to 64”, “subsetType”: “DemographicSubsetOperator”, “ageMin”: 18, “ageMax”: 64 } ], “packageVersion”: “0.11.2”, “identifierExpression”: “targetId * 1000 + definitionId”, “operatorNameConcatString”: “,”, “subsetCohortNameTemplate”: “@baseCohortName - @subsetDefinitionName @operatorNames” } | | 2|{ “name”: “first event with 365 prior obs”, “definitionId”: 2, “subsetOperators”: [ { “name”: “first event with 365 prior obs”, “subsetType”: “LimitSubsetOperator”, “priorTime”: 365, “followUpTime”: 0, “limitTo”: “firstEver” } ], “packageVersion”: “0.11.2”, “identifierExpression”: “targetId * 1000 + definitionId”, “operatorNameConcatString”: “,”, “subsetCohortNameTemplate”: “@baseCohortName - @subsetDefinitionName @operatorNames” } | | 3|{ “name”: “age 18 to 64 and first event with 365 prior obs”, “definitionId”: 3, “subsetOperators”: [ { “name”: “Age 18 to 64”, “subsetType”: “DemographicSubsetOperator”, “ageMin”: 18, “ageMax”: 64 }, { “name”: “first event with 365 prior obs”, “subsetType”: “LimitSubsetOperator”, “priorTime”: 365, “followUpTime”: 0, “limitTo”: “firstEver” } ], “packageVersion”: “0.11.2”, “identifierExpression”: “targetId * 1000 + definitionId”, “operatorNameConcatString”: “,”, “subsetCohortNameTemplate”: “@baseCohortName - @subsetDefinitionName @operatorNames” } |

Extracting Characterization Results

The characterization analysis contains time to event results, dechallenge-rechallenge, risk factor and cohort incidence results.

The time-to-event results tell you how often a outcome occurs relative to some target cohort index date on a 1-day, 30-day and 365-day scale.

tte <- getTimeToEvent(
    connectionHandler = ConnectionHandler,
    schema = 'main'
)

knitr::kable(
  x = tte %>% dplyr::filter(.data$timeScale == 'per 365-day'), 
  caption = 'Example time-to-event results for the 365-day scale.'
  )
Example time-to-event results for the 365-day scale.
databaseName targetName targetId outcomeName outcomeId outcomeType targetOutcomeType timeToEvent numEvents timeScale
Synthea Celecoxib 1 GI bleed 3 first After last target end 365 327 per 365-day
Synthea Celecoxib 1 GI bleed 3 first Before first target start 365 28 per 365-day
Synthea Diclofenac 2 GI bleed 3 first After last target end 365 114 per 365-day
Synthea Diclofenac 2 GI bleed 3 first Before first target start 365 10 per 365-day
Synthea Celecoxib - age 18 to 64 Age 18 to 64 1001 GI bleed 3 first After last target end 365 327 per 365-day
Synthea Celecoxib - age 18 to 64 Age 18 to 64 1001 GI bleed 3 first Before first target start 365 28 per 365-day
Synthea Diclofenac - age 18 to 64 Age 18 to 64 2001 GI bleed 3 first After last target end 365 114 per 365-day
Synthea Diclofenac - age 18 to 64 Age 18 to 64 2001 GI bleed 3 first Before first target start 365 10 per 365-day

The dechallenge-rechallenge analysis shows you how often an outcome occurs during some target exposure and then how often the target exposure is stopped shortly after the outcome and whether the outcome re-occurs when the target exposure restarts:

drc <- getDechallengeRechallenge(
    connectionHandler = ConnectionHandler,
    schema = 'main'
)

knitr::kable(
  x = drc, 
  caption = 'Example dechallenge-rechallenge results.'
  )
Example dechallenge-rechallenge results.
databaseName targetName targetId outcomeName outcomeId dechallengeStopInterval dechallengeEvaluationWindow numExposureEras numPersonsExposed numCases dechallengeAttempt dechallengeFail dechallengeSuccess rechallengeAttempt rechallengeFail rechallengeSuccess pctDechallengeAttempt pctDechallengeFail pctDechallengeSuccess pctRechallengeAttempt pctRechallengeFail pctRechallengeSuccess
Synthea Celecoxib 1 GI bleed 3 30 30 100 80 20 15 10 5 5 1 4 0.75 0.67 0.33 1 0.2 0.8

It is also possible to find the incidence rates (where we restrict to all ages, genders and start years):

ir <- getIncidenceRates(
    connectionHandler = ConnectionHandler,
    schema = 'main', 
    targetIds = 1
)

knitr::kable(
  x = ir %>% dplyr::filter(
    subgroupName == 'All' &
    ageGroupName == 'Any' & 
    genderName == 'Any' &   
    startYear == 'Any'
  ), 
  caption = 'Example incidence rate results.'
  )
Example incidence rate results.
databaseName targetName targetId outcomeName outcomeId cleanWindow subgroupName ageGroupName genderName startYear tarStartWith tarStartOffset tarEndWith tarEndOffset personsAtRiskPe personsAtRisk personDaysPe personDays personOutcomesPe personOutcomes outcomesPe outcomes incidenceProportionP100p incidenceRateP100py
Synthea Celecoxib 1 GI bleed 3 9999 All Any Any Any start 0 end 0 1800 1800 1800 1800 0 0 0 0 0 0
Synthea Celecoxib 1 GI bleed 3 9999 All Any Any Any start 0 start 365 1800 1800 648214 540789 0 0 0 0 0 0

Finally, it is possible to get risk factors (associations between features and the occurrence of the outcome during a time-at-risk) using getBinaryRiskFactors to identify the binary features:

rf <- getBinaryRiskFactors(
    connectionHandler = ConnectionHandler,
    schema = 'main', 
    targetId = 1, 
    outcomeId = 3
)

knitr::kable(
  x = rf, 
  caption = 'Example risk factors for binary features results.'
  )
Example risk factors for binary features results.
databaseName targetName targetCohortId outcomeName outcomeCohortId minPriorObservation outcomeWashoutDays riskWindowStart riskWindowEnd startAnchor endAnchor covariateName caseCount caseAverage nonCaseCount nonCaseAverage SMD absSMD
Synthea Celecoxib 1 GI bleed 3 365 365 1 365 cohort start cohort end age group: 30 - 34 35 0.0985916 171 0.1183391 -0.0635357 0.0635357
Synthea Celecoxib 1 GI bleed 3 365 365 1 365 cohort start cohort end age group: 35 - 39 177 0.4985915 685 0.4740484 0.0789649 0.0789649
Synthea Celecoxib 1 GI bleed 3 365 365 1 365 cohort start cohort end age group: 40 - 44 129 0.3633803 531 0.3674740 -0.0131713 0.0131713
Synthea Celecoxib 1 GI bleed 3 365 365 1 365 cohort start cohort end age group: 45 - 49 14 0.0394366 58 0.0401384 -0.0022579 0.0022579

and getContinuousRiskFactors for the continuous features:

rf <- getContinuousRiskFactors(
    connectionHandler = ConnectionHandler,
    schema = 'main', 
    targetId = 1, 
    outcomeId = 3
)

knitr::kable(
  x = rf, 
  caption = 'Example risk factors for continuous features results.'
  )
Example risk factors for continuous features results.
databaseName targetName targetCohortId minPriorObservation covariateName covariateId targetCountValue targetMinValue targetMaxValue targetAverageValue targetStandardDeviation targetMedianValue targetP10Value targetP25Value targetP75Value targetP90Value outcomeName outcomeCohortId outcomeWashoutDays caseCountValue caseMinValue caseMaxValue caseAverageValue caseStandardDeviation caseMedianValue caseP10Value caseP25Value caseP75Value caseP90Value SMD absSMD
Synthea Celecoxib 1 365 age in years 1002 1800 31 47 38.645 3.321244 39 34 36 41 43 GI bleed 3 365 355 32 46 38.77465 3.274612 39 35 36 41 43 0.0393116 0.0393116
Synthea Celecoxib 1 365 observation time (days) after index 1009 1800 10 28328 7588.082 5352.386801 6676 1336 3442 10649 14808 GI bleed 3 365 355 10 27390 7524.37465 5611.529121 6708 996 3236 10415 14884 -0.0116180 0.0116180
Synthea Celecoxib 1 365 observation time (days) prior to index 1008 1800 11369 17044 14114.684 1195.708067 14100 12544 13160 15040 15744 GI bleed 3 365 355 11550 16805 14159.86761 1176.652643 14155 12644 13250 15075 15840 0.0380906 0.0380906
Synthea Celecoxib 1 365 time (days) between cohort start and end 1010 1800 0 0 0.000 0.000000 0 0 0 0 0 GI bleed 3 365 355 0 0 0.00000 0.000000 0 0 0 0 0 NaN NaN
Synthea Celecoxib 1 365 visit_occurrence concept count during day -365 through 0 concept_count relative to index: Inpatient Visit 9201923 -5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Extracting Prediction Results

The model designs used to develop prediction models in an analysis can be extracted using getPredictionModelDesigns:

modelDesigns <- getPredictionModelDesigns(
    connectionHandler = ConnectionHandler,
    schema = 'main', 
    targetIds = 1002, 
    outcomeIds = 3
)

knitr::kable(
  x = modelDesigns %>%
    dplyr::select(
      "modelDesignId",  
      "modelType",
      "developmentTargetId",
      "developmentTargetName",
      "developmentOutcomeId",   
      "developmentOutcomeName", 
      "timeAtRisk",
      "meanAuroc", 
      "noDevelopmentDatabases"
    ), 
  caption = 'Example model designs for the prediction results.'
  )
Example model designs for the prediction results.
modelDesignId modelType developmentTargetId developmentTargetName developmentOutcomeId developmentOutcomeName timeAtRisk meanAuroc noDevelopmentDatabases
1 logistic 1002 Celecoxib - first event with 365 prior obs first event with 365 prior obs 3 GI bleed ( cohort start+1 ) - ( cohort start+365 ) 0.6885703 1

Once you know the modelDesignId of interest, you can then extract the model performance:

perform <- getPredictionPerformances(
    connectionHandler = ConnectionHandler,
    schema = 'main', 
    modelDesignId = 1
)

knitr::kable(
  x = perform, 
  caption = 'Example performance for the prediction results.'
  )
Example performance for the prediction results.
performanceId modelDesignId developmentDatabaseId validationDatabaseId developmentTargetId developmentTargetName developmentOutcomeId developmentOutcomeName developmentDatabase validationDatabase validationTargetName validationOutcomeName timeStamp auroc auroc95lb auroc95ub calibrationInLarge eStatistic brierScore auprc populationSize outcomeCount evalPercent outcomePercent validationTimeAtRisk predictionResultType
1 1 1 1 1002 Celecoxib - first event with 365 prior obs first event with 365 prior obs 1002 Celecoxib - first event with 365 prior obs first event with 365 prior obs Synthea Synthea Celecoxib - first event with 365 prior obs first event with 365 prior obs GI bleed 2025-02-13 0.6885703 0.6264985 0.7506421 0.0976443 0.0318938 0.0720927 0.3085693 1800 355 24.94444 19.72222 ( cohort start+1 ) - ( cohort start+365 ) Development

As well as the top predictors, in this case we will return the top 5:

top5 <- getPredictionTopPredictors(
    connectionHandler = ConnectionHandler,
    schema = 'main', 
    targetIds = 1002, 
    outcomeIds = 3,
    numberPredictors = 5
)

knitr::kable(
  x = top5 , 
  caption = 'Example top five predictors.'
  )
Example top five predictors.
databaseName tarStartDay tarStartAnchor tarEndDay tarEndAnchor performanceId covariateId covariateName conceptId covariateValue covariateCount covariateMean covariateStDev withNoOutcomeCovariateCount withNoOutcomeCovariateMean withNoOutcomeCovariateStDev withOutcomeCovariateCount withOutcomeCovariateMean withOutcomeCovariateStDev standardizedMeanDiff rn
Synthea 1 cohort start 365 cohort start 1 1901 Charlson index - Romano adaptation 0 1.4448410 935 0.6144444 0.6533777 660 0.5307958 0.6301972 275 0.9549296 0.6352971 0.6702998 1
Synthea 1 cohort start 365 cohort start 1 4266809210 condition_era group (ConditionGroupEraLongTerm) during day -365 through 0 days relative to index: Diverticular disease 4266809 0.5045103 338 0.1877778 0.3905346 210 0.1453287 0.3524320 128 0.3605634 0.4801640 0.5110418 2
Synthea 1 cohort start 365 cohort start 1 4285898212 condition_era group (ConditionGroupEraShortTerm) during day -30 through 0 days relative to index: Polyp of colon 4285898 0.4321971 28 0.0155556 0.1237481 13 0.0089965 0.0944225 15 0.0422535 0.2011670 0.2116439 3
Synthea 1 cohort start 365 cohort start 1 2007 index month: 2 0 -0.2439688 124 0.0688889 0.2532651 104 0.0719723 0.2584421 20 0.0563380 0.2305733 -0.0638383 4
Synthea 1 cohort start 365 cohort start 1 6007 index month: 6 0 -0.1786601 144 0.0800000 0.2712932 122 0.0844291 0.2780302 22 0.0619718 0.2411044 -0.0862999 5

You can also select certain results such as the attrition:

attrition <- getPredictionPerformanceTable(
    connectionHandler = ConnectionHandler,
    schema = 'main', 
    table = 'attrition',
    performanceId = 1
)

knitr::kable(
  x = attrition , 
  caption = 'Example prediction attrition for performance 1.'
  )
Example prediction attrition for performance 1.
performanceId outcomeId description targetCount uniquePeople outcomes
1 3 Original cohorts 1800 1800 355
1 3 Initial plpData cohort or population 1800 1800 355
1 3 No prior outcome 1800 1800 355
1 3 Removing non-outcome subjects with insufficient time at risk (if any) 1800 1800 355

Extracting Estimation Results

It is possible to extract cohort method and self controlled case series results and make nice plots.

To extract all the cohort method estimations for target id 1002 and outcome 3:

cmEst <- getCMEstimation(
    connectionHandler = ConnectionHandler,
    schema = 'main', 
    targetIds = 1002, 
    comparatorIds = 2002,
    outcomeIds = 3
)

knitr::kable(
  x = cmEst , 
  caption = 'Example cohort method estimation results.'
  )
Example cohort method estimation results.
databaseName analysisId description targetName targetId comparatorName comparatorId outcomeName outcomeId calibratedRr calibratedCi95Lb calibratedCi95Ub calibratedP calibratedOneSidedP calibratedLogRr calibratedSeLogRr targetSubjects comparatorSubjects targetDays comparatorDays targetOutcomes comparatorOutcomes targetEstimator
Synthea 1 No matching, simple outcome model Celecoxib - first event with 365 prior obs first event with 365 prior obs 1002 Diclofenac - first event with 365 prior obs first event with 365 prior obs 2002 GI bleed 3 1.832771 0.9724055 3.454372 0.1078385 0.0639169 0.6058291 0.3233791 1800 830 540789 261005 355 124 ate
Synthea 2 Matching on ps and covariates, simple outcomeModel Celecoxib - first event with 365 prior obs first event with 365 prior obs 1002 Diclofenac - first event with 365 prior obs first event with 365 prior obs 2002 GI bleed 3 NA NA NA NA NA NA NA 829 829 263258 260639 117 124 att

You can also extract any meta-analysis estimate for cohort method:

cmMe <- getCmMetaEstimation(
    connectionHandler = ConnectionHandler,
    schema = 'main'
)

knitr::kable(
  x = cmMe , 
  caption = 'Example cohort method meta analysis estimation results.'
  )
Example cohort method meta analysis estimation results.
databaseName analysisId description targetName targetId comparatorName comparatorId outcomeName outcomeId calibratedRr calibratedCi95Lb calibratedCi95Ub calibratedP calibratedOneSidedP calibratedLogRr calibratedSeLogRr targetSubjects comparatorSubjects targetDays comparatorDays targetOutcomes comparatorOutcomes nDatabases

and you can create a nice plot to show the results:

plotCmEstimates(
  cmData = cmEst, 
  cmMeta = NULL,
  targetName = 'Example Target', 
  comparatorName = 'Example Comp', 
  selectedAnalysisId = 1
)