vignettes/AddingCustomModels.Rmd
AddingCustomModels.Rmd
This vignette describes how you can add your own custom algorithms in
the Observational Health Data Sciencs and Informatics (OHDSI) PatientLevelPrediction
package. This allows you to fully leverage the OHDSI
PatientLevelPrediction framework for model development and validation.
This vignette assumes you have read and are comfortable with building
single patient level prediction models as described in the BuildingPredictiveModels
vignette.
We invite you to share your new algorithms with the OHDSI community through our GitHub repository.
Each algorithm in the package should be implemented in its own <Name>.R file, e.g. KNN.R, containing a set<Name> function, a fit<Name> function and a predict<Name> function. Occasionally the fit and prediction functions may be reused (if using an R classifier see RClassifier.R or if using a scikit-learn classifier see SklearnClassifier.R). We will now describe each of these functions in more detail below.
The set<Name> is a function that takes as input the different
hyper-parameter values to do a grid search when training. The output of
the functions needs to be a list as class modelSettings
containing:
The param object can have a setttings attribute containing any extra settings. For example to specify the model name and the seed used for reproducibility:
For example, if you were adding a model called madeUp that has two hyper-parameters then the set function should be:
setMadeUp <- function(a=c(1,4,10), b=2, seed=NULL){
# add input checks here...
param <- split(
expand.grid(
a=a,
b=b
),
1:(length(a)*length(b))
)
attr(param, 'settings') <- list(
modelName = "Made Up",
requiresDenseMatrix = TRUE,
seed = seed
)
# now create list of all combinations:
result <- list(
fitFunction = 'fitMadeUp', # this will be called to train the made up model
param = param
)
class(result) <- 'modelSettings'
return(result)
}
This function should train your custom model for each parameter entry, pick the best parameters and train a final model for that setting.
The fit<Model> should have as inputs:
The fit function should return a list of class plpModel
with the following objects:
In additon the plpModel requires two attributes:
For example
attr(result, 'predictionFunction') <- 'madeupPrediction'
means when the model is applied to new data, the ‘madeupPrediction’
function is called to make predictions. If this doesnt exist, then the
model will fail. The other attribute is the modelType
attr(result, 'modelType') <- 'binary'
this is needed
when evaluating the model to ensure the correct evaluation is applied.
Currently the evaluation supports ‘binary’ and ‘survival’ modelType.
Note: If a new modelType is desired, then the evalaution code within PatientLevelPrediction must be updated to specify how the new type is evaluated. This requires making edits to PatientLevelPrediction and then making a pull request to the PatientLevelPrediction github. The evaluation cannot have one off customization because the evaluation must be standardized to enable comparison across similar models.
A full example of a custom ‘binary’ classifier fit function is:
fitMadeUp <- function(trainData, modelSettings, search, analysisId){
param <- modelSettings$param
# **************** code to train the model here
# trainedModel <- this code should apply each hyper-parameter combination
# (param[[i]]) using the specified search (e.g., cross validation)
# then pick out the best hyper-parameter setting
# and finally fit a model on the whole train data using the
# optimal hyper-parameter settings
# ****************
# **************** code to apply the model to trainData
# prediction <- code to apply trainedModel to trainData
# ****************
# **************** code to get variable importance (if possible)
# varImp <- code to get importance of each variable in trainedModel
# ****************
# construct the standard output for a model:
result <- list(model = trainedModel,
prediction = prediction, # the train and maybe the cross validation predictions for the trainData
preprocessing = list(
featureEngineering = attr(trainData$covariateData, "metaData")$featureEngineering,
tidyCovariates = attr(trainData$covariateData, "metaData")$tidyCovariateDataSettings,
requireDenseMatrix = attr(param, 'settings')$requiresDenseMatrix,
),
modelDesign = list(
outcomeId = attr(trainData, "metaData")$outcomeId,
targetId = attr(trainData, "metaData")$targetId,
plpDataSettings = attr(trainData, "metaData")$plpDataSettings,
covariateSettings = attr(trainData, "metaData")$covariateSettings,
populationSettings = attr(trainData, "metaData")$populationSettings,
featureEngineeringSettings = attr(trainData$covariateData, "metaData")$featureEngineeringSettings,
prerocessSettings = attr(trainData$covariateData, "metaData")$prerocessSettings,
modelSettings = list(
model = attr(param, 'settings')$modelName, # the model name
param = param,
finalModelParameters = param[[bestInd]], # best hyper-parameters
extraSettings = attr(param, 'settings')
),
splitSettings = attr(trainData, "metaData")$splitSettings,
sampleSettings = attr(trainData, "metaData")$sampleSettings
),
trainDetails = list(
analysisId = analysisId,
developmentDatabase = attr(trainData, "metaData")$cdmDatabaseSchema,
attrition = attr(trainData, "metaData")$attrition,
trainingTime = timeToTrain, # how long it took to train the model
trainingDate = Sys.Date(),
hyperParamSearch = hyperSummary # the hyper-parameters and performance data.frame
),
covariateImportance = merge(trainData$covariateData$covariateRef, varImp, by='covariateId') # add variable importance to covariateRef if possible
)
class(result) <- 'plpModel'
attr(result, 'predictionFunction') <- 'madeupPrediction'
attr(result, 'modelType') <- 'binary'
return(result)
}
You could make the fitMadeUp function cleaner by adding helper
function in the MadeUp.R file that are called by the fit function (for
example a function to run cross validation). It is important to ensure
there is a valid prediction function (the one specified by
attr(result, 'predictionFunction') <- 'madeupPrediction'
is madeupPrediction()
) as specified below.
The prediction function takes as input the plpModel returned by fit, new data and a corresponding cohort. It returns a data.frame with the same columns as cohort but with an additional column:
For example:
madeupPrediction <- function(plpModel, data, cohort){
# ************* code to do prediction for each rowId in cohort
# predictionValues <- code to do prediction here returning the predicted risk
# (value) for each rowId in cohort
#**************
prediction <- merge(cohort, predictionValues, by='rowId')
attr(prediction, "metaData") <- list(modelType = attr(plpModel, 'modelType'))
return(prediction)
}
Below a fully functional algorithm example is given, however we highly recommend you to have a look at the available algorithms in the package (see GradientBoostingMachine.R for the set function, RClassifier.R for the fit and prediction function for R classifiers).
setMadeUp <- function(a=c(1,4,6), b=2, seed=NULL){
# add input checks here...
if(is.null(seed)){
seed <- sample(100000,1)
}
param <- split(
expand.grid(
a=a,
b=b
),
1:(length(a)*length(b))
)
attr(param, 'settings') <- list(
modelName = "Made Up",
requiresDenseMatrix = TRUE,
seed = seed
)
# now create list of all combinations:
result <- list(
fitFunction = 'fitMadeUp', # this will be called to train the made up model
param = param
)
class(result) <- 'modelSettings'
return(result)
}
fitMadeUp <- function(trainData, modelSettings, search, analysisId){
# set the seed for reproducibility
param <- modelSettings$param
set.seed(attr(param, 'settings')$seed)
# add folds to labels:
trainData$labels <- merge(trainData$labels, trainData$folds, by= 'rowId')
# convert data into sparse R Matrix:
mappedData <- toSparseM(trainData,map=NULL)
matrixData <- mappedData$dataMatrix
labels <- mappedData$labels
covariateRef <- mappedData$covariateRef
#============= STEP 1 ======================================
# pick the best hyper-params and then do final training on all data...
writeLines('Cross validation')
param.sel <- lapply(
param,
function(x){
do.call(
made_up_model,
list(
param = x,
final = F,
data = matrixData,
labels = labels
)
)
}
)
hyperSummary <- do.call(rbind, lapply(param.sel, function(x) x$hyperSum))
hyperSummary <- as.data.frame(hyperSummary)
hyperSummary$auc <- unlist(lapply(param.sel, function(x) x$auc))
param.sel <- unlist(lapply(param.sel, function(x) x$auc))
bestInd <- which.max(param.sel)
#get cross val prediction for best hyper-parameters
prediction <- param.sel[[bestInd]]$prediction
prediction$evaluationType <- 'CV'
writeLines('final train')
finalResult <- do.call(
made_up_model,
list(
param = param[[bestInd]],
final = T,
data = matrixData,
labels = labels
)
)
trainedModel <- finalResult$model
# prediction risk on training data:
finalResult$prediction$evaluationType <- 'Train'
# get CV and train prediction
prediction <- rbind(prediction, finalResult$prediction)
varImp <- covariateRef %>% dplyr::collect()
# no feature importance available
vqrImp$covariateValue <- 0
timeToTrain <- Sys.time() - start
# construct the standard output for a model:
result <- list(model = trainedModel,
prediction = prediction,
preprocessing = list(
featureEngineering = attr(trainData$covariateData, "metaData")$featureEngineering,
tidyCovariates = attr(trainData$covariateData, "metaData")$tidyCovariateDataSettings,
requireDenseMatrix = attr(param, 'settings')$requiresDenseMatrix,
),
modelDesign = list(
outcomeId = attr(trainData, "metaData")$outcomeId,
targetId = attr(trainData, "metaData")$targetId,
plpDataSettings = attr(trainData, "metaData")$plpDataSettings,
covariateSettings = attr(trainData, "metaData")$covariateSettings,
populationSettings = attr(trainData, "metaData")$populationSettings,
featureEngineeringSettings = attr(trainData$covariateData, "metaData")$featureEngineeringSettings,
prerocessSettings = attr(trainData$covariateData, "metaData")$prerocessSettings,
modelSettings = list(
model = attr(param, 'settings')$modelName, # the model name
param = param,
finalModelParameters = param[[bestInd]], # best hyper-parameters
extraSettings = attr(param, 'settings')
),
splitSettings = attr(trainData, "metaData")$splitSettings,
sampleSettings = attr(trainData, "metaData")$sampleSettings
),
trainDetails = list(
analysisId = analysisId,
developmentDatabase = attr(trainData, "metaData")$cdmDatabaseSchema,
attrition = attr(trainData, "metaData")$attrition,
trainingTime = timeToTrain, # how long it took to train the model
trainingDate = Sys.Date(),
hyperParamSearch = hyperSummary # the hyper-parameters and performance data.frame
),
covariateImportance = merge(trainData$covariateData$covariateRef, varImp, by='covariateId') # add variable importance to covariateRef if possible
),
covariateImportance = varImp
)
class(result) <- 'plpModel'
attr(result, 'predictionFunction') <- 'madeupPrediction'
attr(result, 'modelType') <- 'binary'
return(result)
}
In the fit model a helper function made_up_model
is
called, this is the function that trains a model given the data, labels
and hyper-parameters.
made_up_model <- function(param, data, final=F, labels){
if(final==F){
# add value column to store all predictions
labels$value <- rep(0, nrow(labels))
attr(labels, "metaData") <- list(modelType = "binary")
foldPerm <- c() # this holds CV aucs
for(index in 1:max(labels$index)){
model <- madeup::model(
x = data[labels$index!=index,], # remove left out fold
y = labels$outcomeCount[labels$index!=index],
a = param$a,
b = param$b
)
# predict on left out fold
pred <- stats::predict(model, data[labels$index==index,])
labels$value[labels$index==index] <- pred
# calculate auc on help out fold
aucVal <- computeAuc(labels[labels$index==index,])
foldPerm<- c(foldPerm,aucVal)
}
auc <- computeAuc(labels) # overal AUC
} else {
model <- madeup::model(
x = data,
y = labels$outcomeCount,
a = param$a,
b = param$b
)
pred <- stats::predict(model, data)
labels$value <- pred
attr(labels, "metaData") <- list(modelType = "binary")
auc <- computeAuc(labels)
foldPerm <- auc
}
result <- list(
model = model,
auc = auc,
prediction = labels,
hyperSum = c(a = a, b = b, fold_auc = foldPerm)
)
return(result)
}
The final step is to create a predict function for the model. In the
example above the predeiction function
attr(result, 'predictionFunction') <- 'madeupPrediction'
was madeupPrediction, so a madeupPrediction
function is
required when applying the model. The predict function needs to take as
input the plpModel returned by the fit function, new data to apply the
model on and the cohort specifying the patients of interest to make the
prediction for.
madeupPrediction <- function(plpModel, data , cohort){
if(class(data) == 'plpData'){
# convert
matrixObjects <- toSparseM(
plpData = data,
cohort = cohort,
map = plpModel$covariateImportance %>%
dplyr::select("columnId", "covariateId")
)
newData <- matrixObjects$dataMatrix
cohort <- matrixObjects$labels
}else{
newData <- data
}
if(class(plpModel) == 'plpModel'){
model <- plpModel$model
} else{
model <- plpModel
}
cohort$value <- stats::predict(model, data)
# fix the rowIds to be the old ones
# now use the originalRowId and remove the matrix rowId
cohort <- cohort %>%
dplyr::select(-"rowId") %>%
dplyr::rename(rowId = "originalRowId")
attr(cohort, "metaData") <- list(modelType = attr(plpModel, 'modelType'))
return(cohort)
}
As the madeup model uses the standard R prediction, it has the same
prediction function as xgboost, so we could have not added a new
prediction function and instead made the predictionFunction of the
result returned by fitMadeUpModel to
attr(result, 'predictionFunction') <- 'predictXgboost'
.
Considerable work has been dedicated to provide the
PatientLevelPrediction
package.
citation("PatientLevelPrediction")
## To cite PatientLevelPrediction in publications use:
##
## Reps JM, Schuemie MJ, Suchard MA, Ryan PB, Rijnbeek P (2018). "Design
## and implementation of a standardized framework to generate and
## evaluate patient-level prediction models using observational
## healthcare data." _Journal of the American Medical Informatics
## Association_, *25*(8), 969-975.
## <https://doi.org/10.1093/jamia/ocy032>.
##
## A BibTeX entry for LaTeX users is
##
## @Article{,
## author = {J. M. Reps and M. J. Schuemie and M. A. Suchard and P. B. Ryan and P. Rijnbeek},
## title = {Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data},
## journal = {Journal of the American Medical Informatics Association},
## volume = {25},
## number = {8},
## pages = {969-975},
## year = {2018},
## url = {https://doi.org/10.1093/jamia/ocy032},
## }
Please reference this paper if you use the PLP Package in your work:
This work is supported in part through the National Science Foundation grant IIS 1251151.