Package index
Extracting data from the OMOP CDM database
Functions for getting the necessary data from the database in Common Data Model and saving/loading.
-
createDatabaseDetails() - Create a setting that holds the details about the cdmDatabase connection for data extraction
-
createRestrictPlpDataSettings() - createRestrictPlpDataSettings define extra restriction settings when calling getPlpData
-
getPlpData() - Extract the patient level prediction data from the server
-
getEunomiaPlpData() - Create a plpData object from the Eunomia database'
-
savePlpData() - Save the plpData to folder
-
loadPlpData() - Load the plpData from a folder
-
getCohortCovariateData() - Extracts covariates based on cohorts
-
print(<plpData>) - Print a plpData object
-
print(<summary.plpData>) - Print a summary.plpData object
-
summary(<plpData>) - Summarize a plpData object
-
createStudyPopulationSettings() - create the study population settings
-
createDefaultSplitSetting() - Create the settings for defining how the plpData are split into test/validation/train sets using default splitting functions (either random stratified by outcome, time or subject splitting)
-
createExistingSplitSettings() - Create the settings for defining how the plpData are split into test/validation/train sets using an existing split - good to use for reproducing results from a different run
-
createSampleSettings() - Create the settings for defining how the trainData from
splitDataare sampled using default sample functions.
-
createFeatureEngineeringSettings() - Create the settings for defining any feature engineering that will be done
-
createPreprocessSettings() - Create the settings for preprocessing the trainData.
-
createCohortCovariateSettings() - Extracts covariates based on cohorts
-
createRandomForestFeatureSelection() - Create the settings for random foreat based feature selection
-
createUnivariateFeatureSelection() - Create the settings for defining any feature selection that will be done
-
createSplineSettings() - Create the settings for adding a spline for continuous variables
-
createStratifiedImputationSettings() - Create the settings for using stratified imputation.
-
createNormalizer() - Create the settings for normalizing the data @param type The type of normalization to use, either "minmax" or "robust"
-
createSimpleImputer() - Create Simple Imputer settings
-
createIterativeImputer() - Create Iterative Imputer settings
-
createRareFeatureRemover() - Create the settings for removing rare features
-
createValidationDesign() - createValidationDesign - Define the validation design for external validation
-
validateExternal() - validateExternal - Validate model performance on new data
-
createValidationSettings() - createValidationSettings define optional settings for performing external validation
-
recalibratePlp() - recalibratePlp
-
recalibratePlpRefit() - recalibratePlpRefit
-
createLogSettings() - Create the settings for logging the progression of the analysis
-
createExecuteSettings() - Creates list of settings specifying what parts of runPlp to execute
-
createDefaultExecuteSettings() - Creates default list of settings specifying what parts of runPlp to execute
-
setAdaBoost() - Create setting for AdaBoost with python DecisionTreeClassifier base estimator
-
setDecisionTree() - Create setting for the scikit-learn DecisionTree with python
-
setGradientBoostingMachine() - Create setting for gradient boosting machine model using gbm_xgboost implementation
-
setLassoLogisticRegression() - Create modelSettings for lasso logistic regression
-
setMLP() - Create setting for neural network model with python's scikit-learn. For bigger models, consider using
DeepPatientLevelPredictionpackage.
-
setNaiveBayes() - Create setting for naive bayes model with python
-
setRandomForest() - Create setting for random forest model using sklearn
-
setSVM() - Create setting for the python sklearn SVM (SVC function)
-
setIterativeHardThresholding() - Create setting for Iterative Hard Thresholding model
-
setLightGBM() - Create setting for gradient boosting machine model using lightGBM (https://github.com/microsoft/LightGBM/tree/master/R-package).
-
setCoxModel() - Create setting for lasso Cox model
Single Patient-Level Prediction Model
Functions for training/evaluating/applying a single patient-level-prediction model
-
runPlp() - runPlp - Develop and internally evaluate a model using specified settings
-
externalValidateDbPlp() - externalValidateDbPlp - Validate a model on new databases
-
savePlpModel() - Saves the plp model
-
loadPlpModel() - loads the plp model
-
savePlpResult() - Saves the result from runPlp into the location directory
-
loadPlpResult() - Loads the evalaution dataframe
-
diagnosePlp() - diagnostic - Investigates the prediction problem settings - use before training a model
Multiple Patient-Level Prediction Models
Functions for training multiple patient-level-prediction model in an efficient way.
-
createModelDesign() - Specify settings for developing a single model
-
runMultiplePlp() - Run a list of predictions analyses
-
validateMultiplePlp() - externally validate the multiple plp models across new datasets
-
savePlpAnalysesJson() - Save the modelDesignList to a json file
-
loadPlpAnalysesJson() - Load the multiple prediction json settings from a file
-
diagnoseMultiplePlp() - Run a list of predictions diagnoses
-
createStudyPopulation() - Create a study population
-
splitData() - Split the plpData into test/train sets using a splitting settings of class
splitSettings
-
preprocessData() - A function that wraps around FeatureExtraction::tidyCovariateData to normalise the data and remove rare or redundant features
-
fitPlp() - fitPlp
-
predictPlp() - predictPlp
-
evaluatePlp() - evaluatePlp
-
covariateSummary() - covariateSummary
Saving results into database
Functions for saving the prediction model and performances into a database.
-
insertResultsToSqlite() - Create sqlite database with the results
-
createPlpResultTables() - Create the results tables to store PatientLevelPrediction models and results into a database
-
createDatabaseSchemaSettings() - Create the PatientLevelPrediction database result schema settings
-
extractDatabaseToCsv() - Exports all the results from a database into csv files
-
insertCsvToDatabase() - Function to insert results into a database from csvs
-
migrateDataModel() - Migrate Data model
-
viewPlp() - viewPlp - Interactively view the performance and model settings
-
viewMultiplePlp() - open a local shiny app for viewing the result of a multiple PLP analyses
-
viewDatabaseResultPlp() - open a local shiny app for viewing the result of a PLP analyses from a database
-
plotPlp() - Plot all the PatientLevelPrediction plots
-
plotSparseRoc() - Plot the ROC curve using the sparse thresholdSummary data frame
-
plotSmoothCalibration() - Plot the smooth calibration as detailed in Calster et al. "A calibration heirarchy for risk models was defined: from utopia to empirical data" (2016)
-
plotSparseCalibration() - Plot the calibration
-
plotSparseCalibration2() - Plot the conventional calibration
-
plotNetBenefit() - Plot the net benefit
-
plotDemographicSummary() - Plot the Observed vs. expected incidence, by age and gender
-
plotF1Measure() - Plot the F1 measure efficiency frontier using the sparse thresholdSummary data frame
-
plotGeneralizability() - Plot the train/test generalizability diagnostic
-
plotPrecisionRecall() - Plot the precision-recall curve using the sparse thresholdSummary data frame
-
plotPredictedPDF() - Plot the Predicted probability density function, showing prediction overlap between true and false cases
-
plotPreferencePDF() - Plot the preference score probability density function, showing prediction overlap between true and false cases #'
-
plotPredictionDistribution() - Plot the side-by-side boxplots of prediction distribution, by class
-
plotVariableScatterplot() - Plot the variable importance scatterplot
-
outcomeSurvivalPlot() - Plot the outcome incidence over time
-
createLearningCurve() - createLearningCurve
-
plotLearningCurve() - plotLearningCurve
-
simulatePlpData() - Generate simulated data
-
simulationProfile - A simulation profile for generating synthetic patient level prediction data
-
toSparseM() - Convert the plpData in COO format into a sparse R matrix
-
MapIds() - Map covariate and row Ids so they start from 1
-
listAppend() - join two lists
-
listCartesian() - Cartesian product
-
createTempModelLoc() - Create a temporary model location
-
configurePython() - Sets up a python environment to use for PLP (can be conda or venv)
-
setPythonEnvironment() - Use the python environment created using configurePython()
-
averagePrecision() - Calculate the average precision
-
brierScore() - brierScore
-
calibrationLine() - calibrationLine
-
computeAuc() - Compute the area under the ROC curve
-
ici() - Calculate the Integrated Calibration Index from Austin and Steyerberg https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8281
-
modelBasedConcordance() - Calculate the model-based concordance, which is a calculation of the expected discrimination performance of a model under the assumption the model predicts the "TRUE" outcome as detailed in van Klaveren et al. https://pubmed.ncbi.nlm.nih.gov/27251001/
-
computeGridPerformance() - Computes grid performance with a specified performance function
-
getCalibrationSummary() - Get a sparse summary of the calibration
-
getDemographicSummary() - Get a demographic summary
-
getThresholdSummary() - Calculate all measures for sparse ROC
-
getPredictionDistribution() - Calculates the prediction distribution
-
sklearnFromJson() - Loads sklearn python model from json
-
sklearnToJson() - Saves sklearn python model object to json in path
-
savePlpShareable() - Save the plp result as json files and csv files for transparent sharing
-
loadPlpShareable() - Loads the plp result saved as json/csv files for transparent sharing
-
loadPrediction() - Loads the prediction dataframe to json
-
savePrediction() - Saves the prediction dataframe to a json file
-
pfi() - Permutation Feature Importance
-
predictCyclops() - Create predictive probabilities
-
predictGlm() - predict using a logistic regression model
-
createGlmModel() - createGlmModel
-
createSklearnModel() - Plug an existing scikit learn python model into the PLP framework