Plot the Observed vs. expected incidence, by age and gender
Source:R/Plotting.R
plotDemographicSummary.Rd
Plot the Observed vs. expected incidence, by age and gender
Usage
plotDemographicSummary(
plpResult,
typeColumn = "evaluation",
saveLocation = NULL,
fileName = "roc.png"
)
Arguments
- plpResult
A plp result object as generated using the
runPlp
function.- typeColumn
The name of the column specifying the evaluation type
- saveLocation
Directory to save plot (if NULL plot is not saved)
- fileName
Name of the file to save to plot, for example 'plot.png'. See the function
ggsave
in the ggplot2 package for supported file formats.
Value
A ggplot object. Use the ggsave
function to save to file in a different
format.
Examples
# \donttest{
data("simulationProfile")
plpData <- simulatePlpData(simulationProfile, n = 1000, seed = 42)
#> Generating covariates
#> Generating cohorts
#> Generating outcomes
saveLoc <- file.path(tempdir(), "plotDemographicSummary")
plpResult <- runPlp(plpData, outcomeId = 3, saveDirectory = saveLoc)
#> Use timeStamp: TRUE
#> Creating save directory at: /tmp/Rtmpb7S9Xv/plotDemographicSummary/2025-10-02-3
#> Currently in a tryCatch or withCallingHandlers block, so unable to add global calling handlers. ParallelLogger will not capture R messages, errors, and warnings, only explicit calls to ParallelLogger. (This message will not be shown again this R session)
#> Patient-Level Prediction Package version 6.5.0
#> Study started at: 2025-10-02 13:01:31.418994
#> AnalysisID: 2025-10-02-3
#> AnalysisName: Study details
#> TargetID: 1
#> OutcomeID: 3
#> Cohort size: 1000
#> Covariates: 98
#> Creating population
#> Outcome is 0 or 1
#> Population created with: 954 observations, 954 unique subjects and 434 outcomes
#> Population created in 0.0571 secs
#> seed: 123
#> Creating a 25% test and 75% train (into 3 folds) random stratified split by class
#> Data split into 238 test cases and 716 train cases (239, 239, 238)
#> Data split in 0.574 secs
#> Train Set:
#> Fold 1 239 patients with 109 outcomes - Fold 2 239 patients with 109 outcomes - Fold 3 238 patients with 108 outcomes
#> 66 covariates in train data
#> Test Set:
#> 238 patients with 108 outcomes
#> Removing 2 redundant covariates
#> Removing 0 infrequent covariates
#> Normalizing covariates
#> Tidying covariates took 0.818 secs
#> Train Set:
#> Fold 1 239 patients with 109 outcomes - Fold 2 239 patients with 109 outcomes - Fold 3 238 patients with 108 outcomes
#> 64 covariates in train data
#> Test Set:
#> 238 patients with 108 outcomes
#>
#> Running Cyclops
#> Done.
#> GLM fit status: OK
#> Creating variable importance data frame
#> Prediction took 0.168 secs
#> Time to fit model: 0.391 secs
#> Removing infrequent and redundant covariates and normalizing
#> Removing infrequent and redundant covariates covariates and normalizing took 0.171 secs
#> Prediction took 0.175 secs
#> Prediction done in: 0.51 secs
#> Calculating Performance for Test
#> =============
#> AUC 60.80
#> 95% lower AUC: 53.84
#> 95% upper AUC: 67.77
#> AUPRC: 56.81
#> Brier: 0.23
#> Eavg: 0.10
#> Calibration in large- Mean predicted risk 0.4487 : observed risk 0.4538
#> Calibration in large- Intercept 0.226
#> Weak calibration intercept: 0.226 - gradient:1.937
#> Hosmer-Lemeshow calibration gradient: 1.43 intercept: -0.18
#> Average Precision: 0.58
#> Calculating Performance for Train
#> =============
#> AUC 59.44
#> 95% lower AUC: 55.38
#> 95% upper AUC: 63.50
#> AUPRC: 55.19
#> Brier: 0.24
#> Eavg: 0.02
#> Calibration in large- Mean predicted risk 0.4553 : observed risk 0.4553
#> Calibration in large- Intercept 0.0329
#> Weak calibration intercept: 0.0329 - gradient:1.1795
#> Hosmer-Lemeshow calibration gradient: 1.04 intercept: -0.00
#> Average Precision: 0.55
#> Calculating Performance for CV
#> =============
#> AUC 56.60
#> 95% lower AUC: 52.37
#> 95% upper AUC: 60.83
#> AUPRC: 52.14
#> Brier: 0.24
#> Eavg: 0.01
#> Calibration in large- Mean predicted risk 0.4555 : observed risk 0.4553
#> Calibration in large- Intercept -0.0048
#> Weak calibration intercept: -0.0048 - gradient:0.9771
#> Hosmer-Lemeshow calibration gradient: 0.90 intercept: 0.05
#> Average Precision: 0.52
#> Time to calculate evaluation metrics: 0.311 secs
#> Calculating covariate summary @ 2025-10-02 13:01:34.341268
#> This can take a while...
#> Creating binary labels
#> Joining with strata
#> calculating subset of strata 1
#> calculating subset of strata 2
#> calculating subset of strata 3
#> calculating subset of strata 4
#> Restricting to subgroup
#> Calculating summary for subgroup TrainWithOutcome
#> Restricting to subgroup
#> Calculating summary for subgroup TrainWithNoOutcome
#> Restricting to subgroup
#> Calculating summary for subgroup TestWithOutcome
#> Restricting to subgroup
#> Calculating summary for subgroup TestWithNoOutcome
#> Aggregating with labels and strata
#> Finished covariate summary @ 2025-10-02 13:01:35.656353
#> Time to calculate covariate summary: 1.32 secs
#> Run finished successfully.
#> Saving PlpResult
#> Creating directory to save model
#> plpResult saved to ..\/tmp/Rtmpb7S9Xv/plotDemographicSummary/2025-10-02-3\plpResult
#> runPlp time taken: 4.31 secs
plotDemographicSummary(plpResult)
# clean up
unlink(saveLoc, recursive = TRUE)
# }