Calculate all measures for sparse ROC
Details
Calculates the TP, FP, TN, FN, TPR, FPR, accuracy, PPF, FOR and Fmeasure from a prediction object
Examples
prediction <- data.frame(rowId = 1:100,
outcomeCount = stats::rbinom(1:100, 1, prob=0.5),
value = runif(100),
evaluation = rep("Train", 100))
summary <- getThresholdSummary(prediction)
str(summary)
#> 'data.frame': 100 obs. of 24 variables:
#> $ evaluation : chr "Train" "Train" "Train" "Train" ...
#> $ predictionThreshold : num 0.997 0.995 0.988 0.986 0.975 ...
#> $ preferenceThreshold : num 0.996 0.993 0.985 0.982 0.968 ...
#> $ positiveCount : num 1 2 3 4 5 6 7 8 9 10 ...
#> $ negativeCount : num 99 98 97 96 95 94 93 92 91 90 ...
#> $ trueCount : num 56 56 56 56 56 56 56 56 56 56 ...
#> $ falseCount : num 44 44 44 44 44 44 44 44 44 44 ...
#> $ truePositiveCount : num 0 0 1 2 3 3 4 5 5 6 ...
#> $ trueNegativeCount : num 43 42 42 42 42 41 41 41 40 40 ...
#> $ falsePositiveCount : num 1 2 2 2 2 3 3 3 4 4 ...
#> $ falseNegativeCount : num 56 56 55 54 53 53 52 51 51 50 ...
#> $ f1Score : num NaN NaN 0.0339 0.0667 0.0984 ...
#> $ accuracy : num 0.43 0.42 0.43 0.44 0.45 0.44 0.45 0.46 0.45 0.46 ...
#> $ sensitivity : num 0 0 0.0179 0.0357 0.0536 ...
#> $ falseNegativeRate : num 1 1 0.982 0.964 0.946 ...
#> $ falsePositiveRate : num 0.0227 0.0455 0.0455 0.0455 0.0455 ...
#> $ specificity : num 0.977 0.955 0.955 0.955 0.955 ...
#> $ positivePredictiveValue: num 0 0 0.333 0.5 0.6 ...
#> $ falseDiscoveryRate : num 1 1 0.667 0.5 0.4 ...
#> $ negativePredictiveValue: num 0.434 0.429 0.433 0.438 0.442 ...
#> $ falseOmissionRate : num 0.566 0.571 0.567 0.562 0.558 ...
#> $ positiveLikelihoodRatio: num 0 0 0.393 0.786 1.179 ...
#> $ negativeLikelihoodRatio: num 1.023 1.048 1.029 1.01 0.991 ...
#> $ diagnosticOddsRatio : num 0 0 0.382 0.778 1.189 ...