Extract aggregate statistics of continuous feature analysis IDs of interest for targets
Source:R/CharacterzationQueries.R
getCaseContinuousFeatures.Rd
This function extracts the continuous feature extraction results for cases corresponding to specified target and outcome cohorts.
Usage
getCaseContinuousFeatures(
connectionHandler,
schema,
cTablePrefix = "c_",
cgTablePrefix = "cg_",
databaseTable = "database_meta_data",
targetIds = NULL,
outcomeIds = NULL,
analysisIds = NULL
)
Arguments
- connectionHandler
A connection handler that connects to the database and extracts sql queries. Create a connection handler via `ResultModelManager::ConnectionHandler$new()`.
- schema
The result database schema (e.g., 'main' for sqlite)
- cTablePrefix
The prefix used for the characterization results tables
- cgTablePrefix
The prefix used for the cohort generator results tables
- databaseTable
The name of the table with the database details (default 'database_meta_data')
- targetIds
A vector of integers corresponding to the target cohort IDs
- outcomeIds
A vector of integers corresponding to the outcome cohort IDs
- analysisIds
The feature extraction analysis ID of interest (e.g., 201 is condition)
Value
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
minPriorObservation the minimum required observation days prior to index for an entry
outcomeWashoutDays patients with the outcome occurring within this number of days prior to index are excluded (NA means no exclusion)
covariateName the name of the feature
covariateId the id of the feature
countValue the number of cases who have the feature
minValue the minimum value observed for the feature
maxValue the maximum value observed for the feature
averageValue the mean value observed for the feature
standardDeviation the standard deviation of the value observed for the feature
medianValue the median value observed for the feature
p10Value the 10th percentile of the value observed for the feature
p25Value the 25th percentile of the value observed for the feature
p75Value the 75th percentile of the value observed for the feature
p90Value the 90th percentile of the value observed for the feature
See also
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
Examples
conDet <- getExampleConnectionDetails()
connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)
#> Connecting using SQLite driver
ccf <- getCaseContinuousFeatures(
connectionHandler = connectionHandler,
schema = 'main'
)