Extract aggregate statistics of binary feature analysis IDs of interest for targets
Source:R/CharacterzationQueries.R
getTargetBinaryFeatures.Rd
This function extracts the feature extraction results for targets corresponding to specified target and outcome cohorts.
Usage
getTargetBinaryFeatures(
connectionHandler,
schema,
cTablePrefix = "c_",
cgTablePrefix = "cg_",
databaseTable = "database_meta_data",
targetIds = NULL,
outcomeIds = NULL,
analysisIds = c(3)
)
Arguments
- connectionHandler
A connection handler that connects to the database and extracts sql queries. Create a connection handler via `ResultModelManager::ConnectionHandler$new()`.
- schema
The result database schema (e.g., 'main' for sqlite)
- cTablePrefix
The prefix used for the characterization results tables
- cgTablePrefix
The prefix used for the cohort generator results tables
- databaseTable
The name of the table with the database details (default 'database_meta_data')
- targetIds
A vector of integers corresponding to the target cohort IDs
- outcomeIds
A vector of integers corresponding to the outcome cohort IDs
- analysisIds
The feature extraction analysis ID of interest (e.g., 201 is condition)
Value
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
minPriorObservation the minimum required observation days prior to index for an entry
outcomeWashoutDays patients with the outcome occurring within this number of days prior to index are excluded (NA means no exclusion)
covariateName the name of the feature
sumValue the number of cases who have the feature value of 1
See also
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
Examples
conDet <- getExampleConnectionDetails()
connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)
#> Connecting using SQLite driver
tbf <- getTargetBinaryFeatures (
connectionHandler = connectionHandler,
schema = 'main'
)