
Update cohort start date to be the first date from of a set of column dates
Source:R/entryAtColumnDate.R
entryAtFirstDate.RdentryAtFirstDate() resets cohort start date based on a set of specified
column dates. The first date that occurs is chosen.
Usage
entryAtFirstDate(
cohort,
dateColumns,
cohortId = NULL,
returnReason = FALSE,
keepDateColumns = TRUE,
name = tableName(cohort),
.softValidation = FALSE
)Arguments
- cohort
A cohort table in a cdm reference.
- dateColumns
Character vector indicating date columns in the cohort table to consider.
- cohortId
Vector identifying which cohorts to modify (cohort_definition_id or cohort_name). If NULL, all cohorts will be used; otherwise, only the specified cohorts will be modified, and the rest will remain unchanged.
- returnReason
If TRUE it will return a column indicating which of the
dateColumnswas used.- keepDateColumns
If TRUE the returned cohort will keep columns in
dateColumns.- name
Name of the new cohort table created in the cdm object.
- .softValidation
Whether to perform a soft validation of consistency. If set to FALSE four additional checks will be performed: 1) a check that cohort end date is not before cohort start date, 2) a check that there are no missing values in required columns, 3) a check that cohort duration is all within observation period, and 4) that there are no overlapping cohort entries
Examples
# \donttest{
library(CohortConstructor)
library(PatientProfiles)
cdm <- mockCohortConstructor()
#> ℹ Reading GiBleed tables.
cdm$cohort1 <- cdm$cohort1 |>
addTableIntersectDate(
tableName = "drug_exposure",
nameStyle = "prior_drug",
order = "last",
window = c(-Inf, 0)
) |>
addPriorObservation(priorObservationType = "date", name = "cohort1")
cdm$cohort1 |>
entryAtFirstDate(dateColumns = c("prior_drug", "prior_observation"))
#> Joining with `by = join_by(cohort_definition_id, subject_id, cohort_end_date)`
#> # A tibble: 58 × 6
#> cohort_definition_id subject_id cohort_start_date cohort_end_date prior_drug
#> <int> <int> <date> <date> <date>
#> 1 1 1 2009-02-01 2012-06-23 2010-11-19
#> 2 1 2 2003-12-12 2011-12-21 2010-10-19
#> 3 1 3 1977-02-08 1981-07-17 1978-03-14
#> 4 1 6 2019-02-24 2019-05-16 2019-04-26
#> 5 1 11 1981-05-22 1988-07-17 1986-06-08
#> 6 1 12 2019-03-13 2019-07-02 2019-06-23
#> 7 1 13 1999-12-24 2011-03-09 2007-08-16
#> 8 1 14 2007-03-03 2014-07-21 2013-07-12
#> 9 1 16 2005-05-12 2016-02-12 2016-02-05
#> 10 1 18 2013-04-30 2019-10-26 2019-10-06
#> # ℹ 48 more rows
#> # ℹ 1 more variable: prior_observation <date>
# }