library(CohortConstructor)
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) :
#> object 'type_sum.accel' not found
library(CohortCharacteristics)
library(ggplot2)
For this example we’ll use the Eunomia synthetic data from the CDMConnector package.
con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir())
cdm <- cdm_from_con(con, cdm_schema = "main",
write_schema = c(prefix = "my_study_", schema = "main"))
Let’s start by creating two drug cohorts, one for users of diclofenac and another for users of acetaminophen.
cdm$medications <- conceptCohort(cdm = cdm,
conceptSet = list("diclofenac" = 1124300,
"acetaminophen" = 1127433),
name = "medications")
cohortCount(cdm$medications)
#> # A tibble: 2 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 9365 2580
#> 2 2 830 830
We can take a sample from a cohort table using the function
sampleCohort()
. This allows us to specify the number of
individuals in each cohort.
cdm$medications |> sampleCohorts(cohortId = NULL, n = 100)
#> # Source: table<main.my_study_medications> [?? x 4]
#> # Database: DuckDB v1.1.3 [unknown@Linux 6.8.0-1017-azure:R 4.4.2//tmp/RtmpLvyVNC/file23fcfd58128.duckdb]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <int> <date> <date>
#> 1 1 758 2000-07-12 2000-07-19
#> 2 1 3672 1979-06-23 1979-07-07
#> 3 1 3308 1979-11-17 1979-11-24
#> 4 2 933 2011-07-09 2011-07-09
#> 5 2 621 1953-11-29 1953-11-29
#> 6 2 3088 1980-08-21 1980-08-21
#> 7 1 3011 2014-05-12 2014-05-19
#> 8 1 1293 2016-09-12 2016-12-11
#> 9 1 2436 1980-08-21 1980-09-04
#> 10 1 1079 1983-02-06 1983-02-20
#> # ℹ more rows
cohortCount(cdm$medications)
#> # A tibble: 2 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 359 100
#> 2 2 100 100
When cohortId = NULL all cohorts in the table are used. Note that this function does not reduced the number of records in each cohort, only the number of individuals.
It is also possible to only sample one cohort within cohort table, however the remaining cohorts will still remain.
cdm$medications <- cdm$medications |> sampleCohorts(cohortId = 2, n = 100)
cohortCount(cdm$medications)
#> # A tibble: 2 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 9365 2580
#> 2 2 100 100
The chosen cohort (users of diclofenac) has been reduced to 100 individuals, as specified in the function, however all individuals from cohort 1 (users of acetaminophen) and their records remain.
If you want to filter the cohort table to only include individuals
and records from a specified cohort, you can use the function
subsetCohorts
.
cdm$medications <- cdm$medications |> subsetCohorts(cohortId = 2)
cohortCount(cdm$medications)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 2 830 830
The cohort table has been filtered so it now only includes
individuals and records from cohort 2. If you want to take a sample of
the filtered cohort table then you can use the
sampleCohorts
function.
cdm$medications <- cdm$medications |> sampleCohorts(cohortId = 2, n = 100)
cohortCount(cdm$medications)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 2 100 100