library(CohortConstructor)
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) :
#> object 'type_sum.accel' not found
library(CohortCharacteristics)
library(ggplot2)
For this example we’ll use the Eunomia synthetic data from the CDMConnector package.
con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir())
cdm <- cdm_from_con(con, cdm_schema = "main",
write_schema = c(prefix = "my_study_", schema = "main"))
Let’s start by creating two drug cohorts, one for users of diclofenac and another for users of acetaminophen.
cdm$medications <- conceptCohort(cdm = cdm,
conceptSet = list("diclofenac" = 1124300,
"acetaminophen" = 1127433),
name = "medications")
cohortCount(cdm$medications)
#> # A tibble: 2 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 9365 2580
#> 2 2 830 830
To check whether there is an overlap between records in both cohorts
using the function intersectCohorts()
.
cdm$medintersect <- CohortConstructor::intersectCohorts(
cohort = cdm$medications,
name = "medintersect"
)
cohortCount(cdm$medintersect)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 6 6
There are 6 individuals who had overlapping records in the diclofenac and acetaminophen cohorts.
We can choose the number of days between cohort entries using the
gap
argument.
cdm$medintersect <- CohortConstructor::intersectCohorts(
cohort = cdm$medications,
gap = 365,
name = "medintersect"
)
cohortCount(cdm$medintersect)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 94 94
There are 94 individuals who had overlapping records (within 365 days) in the diclofenac and acetaminophen cohorts.
We can also combine different cohorts using the function
unionCohorts()
.
cdm$medunion <- CohortConstructor::unionCohorts(
cohort = cdm$medications,
name = "medunion"
)
cohortCount(cdm$medunion)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 10189 2605
We have now created a new cohort which includes individuals in either the diclofenac cohort or the acetaminophen cohort.
You can keep the original cohorts in the new table if you use the
argument keepOriginalCohorts = TRUE
.
cdm$medunion <- CohortConstructor::unionCohorts(
cohort = cdm$medications,
name = "medunion",
keepOriginalCohorts = TRUE
)
cohortCount(cdm$medunion)
#> # A tibble: 3 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 9365 2580
#> 2 2 830 830
#> 3 3 10189 2605
You can also choose the number of days between two subsequent cohort
entries to be merged using the gap
argument.
cdm$medunion <- CohortConstructor::unionCohorts(
cohort = cdm$medications,
name = "medunion",
gap = 365,
keepOriginalCohorts = TRUE
)
cohortCount(cdm$medunion)
#> # A tibble: 3 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 9365 2580
#> 2 2 830 830
#> 3 3 9682 2605