
Set cohort start date to the last of a set of column dates
Source:R/entryAtColumnDate.R
entryAtLastDate.Rd
entryAtLastDate()
resets cohort end date based on a set of specified
column dates. The last date is chosen.
Usage
entryAtLastDate(
cohort,
dateColumns,
cohortId = NULL,
returnReason = FALSE,
keepDateColumns = TRUE,
name = tableName(cohort),
.softValidation = FALSE
)
Arguments
- cohort
A cohort table in a cdm reference.
- dateColumns
Character vector indicating date columns in the cohort table to consider.
- cohortId
Vector identifying which cohorts to modify (cohort_definition_id or cohort_name). If NULL, all cohorts will be used; otherwise, only the specified cohorts will be modified, and the rest will remain unchanged.
- returnReason
If TRUE it will return a column indicating which of the
dateColumns
was used.- keepDateColumns
If TRUE the returned cohort will keep columns in
dateColumns
.- name
Name of the new cohort table created in the cdm object.
- .softValidation
Whether to perform a soft validation of consistency. If set to FALSE four additional checks will be performed: 1) a check that cohort end date is not before cohort start date, 2) a check that there are no missing values in required columns, 3) a check that cohort duration is all within observation period, and 4) that there are no overlapping cohort entries
Examples
# \donttest{
library(CohortConstructor)
library(PatientProfiles)
cdm <- mockCohortConstructor()
cdm$cohort1 <- cdm$cohort1 |>
addTableIntersectDate(
tableName = "drug_exposure",
nameStyle = "prior_drug",
order = "last",
window = c(-Inf, 0)
) |>
addPriorObservation(priorObservationType = "date", name = "cohort1")
cdm$cohort1 |>
entryAtLastDate(dateColumns = c("prior_drug", "prior_observation"))
#> Joining with `by = join_by(cohort_definition_id, subject_id, cohort_end_date)`
#> # A tibble: 57 × 6
#> cohort_definition_id subject_id cohort_start_date cohort_end_date prior_drug
#> <int> <int> <date> <date> <date>
#> 1 1 1 2007-01-07 2007-01-18 2007-01-07
#> 2 1 2 2006-07-18 2007-02-28 2006-07-18
#> 3 1 3 1991-04-23 1996-08-22 1991-04-23
#> 4 1 4 2017-05-06 2017-05-27 2017-05-06
#> 5 1 5 2017-10-20 2018-06-10 2017-10-20
#> 6 1 6 2019-12-05 2019-12-07 2019-12-05
#> 7 1 8 1991-04-29 1997-02-11 1991-04-29
#> 8 1 10 2008-05-02 2009-03-06 2008-05-02
#> 9 1 11 2014-01-28 2014-02-19 2014-01-28
#> 10 1 12 1970-04-08 1972-06-25 1970-04-08
#> # ℹ 47 more rows
#> # ℹ 1 more variable: prior_observation <date>
# }