References

Allison, D. B., A. W. Brown, B. J. George, and K. A. Kaiser. 2016. “Reproducibility: A tragedy of errors.” Nature 530 (7588): 27–29.

Arnold, B. F., A. Ercumen, J. Benjamin-Chung, and J. M. Colford. 2016. “Brief Report: Negative Controls to Detect Selection Bias and Measurement Bias in Epidemiologic Studies.” Epidemiology 27 (5): 637–41.

Austin, Peter C. 2011. “Optimal Caliper Widths for Propensity-Score Matching When Estimating Differences in Means and Differences in Proportions in Observational Studies.” Pharmaceutical Statistics 10 (2): 150–61.

Banda, J. M., Y. Halpern, D. Sontag, and N. H. Shah. 2017. “Electronic phenotyping with APHRODITE and the Observational Health Sciences and Informatics (OHDSI) data network.” AMIA Jt Summits Transl Sci Proc 2017: 48–57.

Boland, M. R., P. Parhi, L. Li, R. Miotto, R. Carroll, U. Iqbal, P. A. Nguyen, et al. 2017. “Uncovering exposures responsible for birth season - disease effects: a global study.” J Am Med Inform Assoc, September.

Botsis, Taxiarchis, Gunnar Hartvigsen, Fei Chen, and Chunhua Weng. 2010. “Secondary Use of Ehr: Data Quality Issues and Informatics Opportunities.” Summit on Translational Bioinformatics 2010: 1.

Byrd, J. B., A. Adam, and N. J. Brown. 2006. “Angiotensin-converting enzyme inhibitor-associated angioedema.” Immunol Allergy Clin North Am 26 (4): 725–37.

Callahan, Tiffany J, Alan E Bauck, David Bertoch, Jeff Brown, Ritu Khare, Patrick B Ryan, Jenny Staab, Meredith N Zozus, and Michael G Kahn. 2017. “A Comparison of Data Quality Assessment Checks in Six Data Sharing Networks.” eGEMs 5 (1).

Cepeda, M. S., J. Reps, D. Fife, C. Blacketer, P. Stang, and P. Ryan. 2018. “Finding treatment-resistant depression in real-world data: How a data-driven approach compares with expert-based heuristics.” Depress Anxiety 35 (3): 220–28.

Chen, Xiaoli, Sünje Dallmeier-Tiessen, Robin Dasler, Sebastian Feger, Pamfilos Fokianos, Jose Benito Gonzalez, Harri Hirvonsalo, et al. 2018. “Open Is Not Enough.” Nature Physics 15 (2): 113–19. https://doi.org/10.1038/s41567-018-0342-2.

Cicardi, M., L. C. Zingale, L. Bergamaschini, and A. Agostoni. 2004. “Angioedema associated with angiotensin-converting enzyme inhibitor use: outcome after switching to a different treatment.” Arch. Intern. Med. 164 (8): 910–13.

Dasu, Tamraparni, and Theodore Johnson. 2003. Exploratory Data Mining and Data Cleaning. Vol. 479. John Wiley & Sons.

Defalco, F. J., P. B. Ryan, and M. Soledad Cepeda. 2013. “Applying standardized drug terminologies to observational healthcare databases: a case study on opioid exposure.” Health Serv Outcomes Res Methodol 13 (1): 58–67.

DerSimonian, R., and N. Laird. 1986. “Meta-analysis in clinical trials.” Control Clin Trials 7 (3): 177–88.

Duke, J. D., P. B. Ryan, M. A. Suchard, G. Hripcsak, P. Jin, C. Reich, M. S. Schwalm, et al. 2017. “Risk of angioedema associated with levetiracetam compared with phenytoin: Findings of the observational health data sciences and informatics research network.” Epilepsia 58 (8): e101–e106.

Elm, Erik von, Douglas G. Altman, Matthias Egger, Stuart J. Pocock, Peter C. Gøtzsche, and Jan P. Vandenbroucke. 2008. “The Strengthening the Reporting of Observational Studies in Epidemiology (Strobe) Statement: Guidelines for Reporting Observational Studies.” Journal of Clinical Epidemiology 61 (4): 344–49. https://doi.org/10.1016/j.jclinepi.2007.11.008.

Farrington, C. P. 1995. “Relative incidence estimation from case series for vaccine safety evaluation.” Biometrics 51 (1): 228–35.

Farrington, C. P., Karim Anaya-Izquierdo, Heather J. Whitaker, Mounia N. Hocine, Ian Douglas, and Liam Smeeth. 2011. “Self-Controlled Case Series Analysis with Event-Dependent Observation Periods.” Journal of the American Statistical Association 106 (494): 417–26. https://doi.org/10.1198/jasa.2011.ap10108.

Fuller, Wayne A. 2009. Measurement Error Models. Vol. 305. John Wiley & Sons.

Garza, M., G. Del Fiol, J. Tenenbaum, A. Walden, and M. N. Zozus. 2016. “Evaluating common data models for use with a longitudinal community registry.” J Biomed Inform 64 (December): 333–41.

Hernan, M. A., S. Hernandez-Diaz, M. M. Werler, and A. A. Mitchell. 2002. “Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology.” Am. J. Epidemiol. 155 (2): 176–84.

Hernan, M. A., and J. M. Robins. 2016. “Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available.” Am. J. Epidemiol. 183 (8): 758–64.

Hersh, William R, Mark G Weiner, Peter J Embi, Judith R Logan, Philip RO Payne, Elmer V Bernstam, Harold P Lehmann, et al. 2013. “Caveats for the Use of Operational Electronic Health Record Data in Comparative Effectiveness Research.” Medical Care 51 (8 0 3): S30.

Higgins, J. P., S. G. Thompson, J. J. Deeks, and D. G. Altman. 2003. “Measuring inconsistency in meta-analyses.” BMJ 327 (7414): 557–60.

Hill, A. B. 1965. “THE ENVIRONMENT AND DISEASE: ASSOCIATION OR CAUSATION?” Proc. R. Soc. Med. 58 (May): 295–300.

Hripcsak, G., and D. J. Albers. 2017. “High-fidelity phenotyping: richness and freedom from bias.” J Am Med Inform Assoc, October.

Hripcsak, George, Jon D Duke, Nigam H Shah, Christian G Reich, Vojtech Huser, Martijn J Schuemie, Marc A Suchard, et al. 2015. “Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers.” Studies in Health Technology and Informatics 216: 574–78. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815923/.

Hripcsak, George, Patrick B. Ryan, Jon D. Duke, Nigam H. Shah, Rae Woong Park, Vojtech Huser, Marc A. Suchard, et al. 2016. “Characterizing treatment pathways at scale using the OHDSI network.” Proceedings of the National Academy of Sciences 113 (27): 7329–36. https://doi.org/10.1073/pnas.1510502113.

Hripcsak, G., M. E. Levine, N. Shang, and P. B. Ryan. 2018. “Effect of vocabulary mapping for conditions on phenotype cohorts.” J Am Med Inform Assoc 25 (12): 1618–25.

Hripcsak, G., N. Shang, P. L. Peissig, L. V. Rasmussen, C. Liu, B. Benoit, R. J. Carroll, et al. 2019. “Facilitating phenotype transfer using a common data model.” J Biomed Inform, July, 103253.

Huser, Vojtech, Frank J. DeFalco, Martijn Schuemie, Patrick B. Ryan, Ning Shang, Mark Velez, Rae Woong Park, et al. 2016. “Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets.” EGEMS (Washington, DC) 4 (1): 1239. https://doi.org/10.13063/2327-9214.1239.

Huser, Vojtech, Michael G. Kahn, Jeffrey S. Brown, and Ramkiran Gouripeddi. 2018. “Methods for Examining Data Quality in Healthcare Integrated Data Repositories.” Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 23: 628–33.

Johnston, S. S., J. M. Morton, I. Kalsekar, E. M. Ammann, C. W. Hsiao, and J. Reps. 2019. “Using Machine Learning Applied to Real-World Healthcare Data for Predictive Analytics: An Applied Example in Bariatric Surgery.” Value Health 22 (5): 580–86.

Kahn, Michael G., Jeffrey S. Brown, Alein T. Chun, Bruce N. Davidson, Daniella Meeker, P. B. Ryan, Lisa M. Schilling, Nicole G. Weiskopf, Andrew E. Williams, and Meredith Nahm Zozus. 2015. “Transparent Reporting of Data Quality in Distributed Data Networks.” EGEMS (Washington, DC) 3 (1): 1052. https://doi.org/10.13063/2327-9214.1052.

Kahn, Michael G., Tiffany J. Callahan, Juliana Barnard, Alan E. Bauck, Jeff Brown, Bruce N. Davidson, Hossein Estiri, et al. 2016. “A Harmonized Data Quality Assessment Terminology and Framework for the Secondary Use of Electronic Health Record Data.” EGEMS (Washington, DC) 4 (1): 1244. https://doi.org/10.13063/2327-9214.1244.

Kahn, Michael G, Marsha A Raebel, Jason M Glanz, Karen Riedlinger, and John F Steiner. 2012. “A Pragmatic Framework for Single-Site and Multisite Data Quality Assessment in Electronic Health Record-Based Clinical Research.” Medical Care 50.

Lei, Johan van der. 1991. “Use and Abuse of Computer-Stored Medical Records.” Methods of Information in Medicine 30 (02): 79–80.

Liaw, Siaw-Teng, Alireza Rahimi, Pradeep Ray, Jane Taggart, Sarah Dennis, Simon de Lusignan, B Jalaludin, AET Yeo, and Amir Talaei-Khoei. 2013. “Towards an Ontology for Data Quality in Integrated Chronic Disease Management: A Realist Review of the Literature.” International Journal of Medical Informatics 82 (1): 10–24.

Lipsitch, M., E. Tchetgen Tchetgen, and T. Cohen. 2010. “Negative controls: a tool for detecting confounding and bias in observational studies.” Epidemiology 21 (3): 383–88.

Maclure, M. 1991. “The case-crossover design: a method for studying transient effects on the risk of acute events.” Am. J. Epidemiol. 133 (2): 144–53.

Madigan, D., P. B. Ryan, and M. Schuemie. 2013. “Does design matter? Systematic evaluation of the impact of analytical choices on effect estimates in observational studies.” Ther Adv Drug Saf 4 (2): 53–62.

Madigan, D., P. B. Ryan, M. Schuemie, P. E. Stang, J. M. Overhage, A. G. Hartzema, M. A. Suchard, W. DuMouchel, and J. A. Berlin. 2013. “Evaluating the impact of database heterogeneity on observational study results.” Am. J. Epidemiol. 178 (4): 645–51.

Magid, D. J., S. M. Shetterly, K. L. Margolis, H. M. Tavel, P. J. O’Connor, J. V. Selby, and P. M. Ho. 2010. “Comparative effectiveness of angiotensin-converting enzyme inhibitors versus beta-blockers as second-line therapy for hypertension.” Circ Cardiovasc Qual Outcomes 3 (5): 453–58.

Makadia, R., and P. B. Ryan. 2014. “Transforming the Premier Perspective Hospital Database into the Observational Medical Outcomes Partnership (OMOP) Common Data Model.” EGEMS (Wash DC) 2 (1): 1110.

Martin, Robert C. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Matcho, A., P. Ryan, D. Fife, and C. Reich. 2014. “Fidelity assessment of a clinical practice research datalink conversion to the OMOP common data model.” Drug Saf 37 (11): 945–59.

Noren, G. N., O. Caster, K. Juhlin, and M. Lindquist. 2014. “Zoo or savannah? Choice of training ground for evidence-based pharmacovigilance.” Drug Saf 37 (9): 655–59.

Norman, J. L., W. L. Holmes, W. A. Bell, and S. W. Finks. 2013. “Life-threatening ACE inhibitor-induced angioedema after eleven years on lisinopril.” J Pharm Pract 26 (4): 382–88.

Oliveira, José Luı́s, Alina Trifan, and Luı́s A. Bastião Silva. 2019. “EMIF Catalogue: A Collaborative Platform for Sharing and Reusing Biomedical Data.” International Journal of Medical Informatics 126 (June): 35–45. https://doi.org/10.1016/j.ijmedinf.2019.02.006.

Olsen, LeighAnne, Dara Aisner, J Michael McGinnis, and others. 2007. The Learning Healthcare System: Workshop Summary. Natl Academy Pr.

O’Mara, N. B., and E. M. O’Mara. 1996. “Delayed onset of angioedema with angiotensin-converting enzyme inhibitors: case report and review of the literature.” Pharmacotherapy 16 (4): 675–79.

Overhage, J. M., P. B. Ryan, C. G. Reich, A. G. Hartzema, and P. E. Stang. 2012. “Validation of a common data model for active safety surveillance research.” J Am Med Inform Assoc 19 (1): 54–60.

Perkins, Neil J, Stephen R Cole, Ofer Harel, Eric J Tchetgen Tchetgen, BaoLuo Sun, Emily M Mitchell, and Enrique F Schisterman. 2017. “Principled Approaches to Missing Data in Epidemiologic Studies.” American Journal of Epidemiology 187 (3): 568–75.

Powers, B. J., R. R. Coeytaux, R. J. Dolor, V. Hasselblad, U. D. Patel, W. S. Yancy, R. N. Gray, R. J. Irvine, A. S. Kendrick, and G. D. Sanders. 2012. “Updated report on comparative effectiveness of ACE inhibitors, ARBs, and direct renin inhibitors for patients with essential hypertension: much more data, little new information.” J Gen Intern Med 27 (6): 716–29.

Prasad, V., and A. B. Jena. 2013. “Prespecified falsification end points: can they validate true observational associations?” JAMA 309 (3): 241–42.

Ramcharran, D., H. Qiu, M. J. Schuemie, and P. B. Ryan. 2017. “Atypical Antipsychotics and the Risk of Falls and Fractures Among Older Adults: An Emulation Analysis and an Evaluation of Additional Confounding Control Strategies.” J Clin Psychopharmacol 37 (2): 162–68.

Rassen, J. A., A. A. Shelat, J. Myers, R. J. Glynn, K. J. Rothman, and S. Schneeweiss. 2012. “One-to-many propensity score matching in cohort studies.” Pharmacoepidemiol Drug Saf 21 Suppl 2 (May): 69–80.

Reps, J. M., P. R. Rijnbeek, and P. B. Ryan. 2019. “Identifying the DEAD: Development and Validation of a Patient-Level Model to Predict Death Status in Population-Level Claims Data.” Drug Saf, May.

Reps, J. M., M. J. Schuemie, M. A. Suchard, P. B. Ryan, and P. R. Rijnbeek. 2018. “Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data.” Journal of the American Medical Informatics Association 25 (8): 969–75. https://doi.org/10.1093/jamia/ocy032.

Roebuck, Kevin. 2012. Data Quality: High-Impact Strategies-What You Need to Know: Definitions, Adoptions, Impact, Benefits, Maturity, Vendors. Emereo Publishing.

Rosenbaum, P. 2005. “Sensitivity Analysis in Observational Studies.” In Encyclopedia of Statistics in Behavioral Science. American Cancer Society. https://doi.org/10.1002/0470013192.bsa606.

Rosenbaum, P., and D. Rubin. 1983. “The Central Role of the Propensity Score in Observational Studies for Causal Effects.” Biometrika 70 (April): 41–55. https://doi.org/10.1093/biomet/70.1.41.

Rubbo, B., N. K. Fitzpatrick, S. Denaxas, M. Daskalopoulou, N. Yu, R. S. Patel, H. Hemingway, et al. 2015. “Use of electronic health records to ascertain, validate and phenotype acute myocardial infarction: A systematic review and recommendations.” Int. J. Cardiol. 187: 705–11.

Rubin, Donald B. 2001. “Using Propensity Scores to Help Design Observational Studies: Application to the Tobacco Litigation.” Health Services and Outcomes Research Methodology 2 (3-4): 169–88.

Ryan, P. B., J. B. Buse, M. J. Schuemie, F. DeFalco, Z. Yuan, P. E. Stang, J. A. Berlin, and N. Rosenthal. 2018. “Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D).” Diabetes Obes Metab 20 (11): 2585–97.

Ryan, P. B., D. Madigan, P. E. Stang, J. M. Overhage, J. A. Racoosin, and A. G. Hartzema. 2012. “Empirical assessment of methods for risk identification in healthcare data: results from the experiments of the Observational Medical Outcomes Partnership.” Stat Med 31 (30): 4401–15.

Ryan, P. B., M. J. Schuemie, and D. Madigan. 2013. “Empirical performance of a self-controlled cohort method: lessons for developing a risk identification and analysis system.” Drug Saf 36 Suppl 1 (October): 95–106.

Ryan, P. B., M. J. Schuemie, D. Ramcharran, and P. E. Stang. 2017. “Atypical Antipsychotics and the Risks of Acute Kidney Injury and Related Outcomes Among Older Adults: A Replication Analysis and an Evaluation of Adapted Confounding Control Strategies.” Drugs Aging 34 (3): 211–19.

Ryan, P. B., P. E. Stang, J. M. Overhage, M. A. Suchard, A. G. Hartzema, W. DuMouchel, C. G. Reich, M. J. Schuemie, and D. Madigan. 2013. “A comparison of the empirical performance of methods for a risk identification system.” Drug Saf 36 Suppl 1 (October): S143–158.

Sabroe, R. A., and A. K. Black. 1997. “Angiotensin-converting enzyme (ACE) inhibitors and angio-oedema.” Br. J. Dermatol. 136 (2): 153–58.

Schneeweiss, S. 2018. “Automated data-adaptive analytics for electronic healthcare data to study causal treatment effects.” Clin Epidemiol 10: 771–88.

Schuemie, M. J., G. Hripcsak, P. B. Ryan, D. Madigan, and M. A. Suchard. 2016. “Robust empirical calibration of p-values using observational data.” Stat Med 35 (22): 3883–8.

———. 2018. “Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data.” Proc. Natl. Acad. Sci. U.S.A. 115 (11): 2571–7.

Schuemie, M. J., P. B. Ryan, W. DuMouchel, M. A. Suchard, and D. Madigan. 2014. “Interpreting observational studies: why empirical calibration is needed to correct p-values.” Stat Med 33 (2): 209–18.

Schuemie, M. J., P. B. Ryan, G. Hripcsak, D. Madigan, and M. A. Suchard. 2018. “Improving reproducibility by using high-throughput observational studies with empirical calibration.” Philos Trans A Math Phys Eng Sci 376 (2128).

Sherman, Rachel E, Steven A Anderson, Gerald J Dal Pan, Gerry W Gray, Thomas Gross, Nina L Hunter, Lisa LaVange, et al. 2016. “Real-World Evidence—What Is It and What Can It Tell Us.” N Engl J Med 375 (23): 2293–7.

Simpson, S. E., D. Madigan, I. Zorych, M. J. Schuemie, P. B. Ryan, and M. A. Suchard. 2013. “Multiple self-controlled case series for large-scale longitudinal observational databases.” Biometrics 69 (4): 893–902.

Slater, Eve E., Debora D. Merrill, Harry A. Guess, Peter J. Roylance, Warren D. Cooper, William H. W. Inman, and Pamela W. Ewan. 1988. “Clinical Profile of Angioedema Associated With Angiotensin Converting-Enzyme Inhibition.” JAMA 260 (7): 967–70. https://doi.org/10.1001/jama.1988.03410070095035.

Stang, P. E., P. B. Ryan, J. A. Racoosin, J. M. Overhage, A. G. Hartzema, C. Reich, E. Welebob, T. Scarnecchia, and J. Woodcock. 2010. “Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership.” Ann. Intern. Med. 153 (9): 600–606.

Suchard, M. A., S. E. Simpson, Ivan Zorych, P. B. Ryan, and David Madigan. 2013. “Massive Parallelization of Serial Inference Algorithms for a Complex Generalized Linear Model.” ACM Trans. Model. Comput. Simul. 23 (1): 10:1–10:17. https://doi.org/10.1145/2414416.2414791.

Suissa, S. 1995. “The case-time-control design.” Epidemiology 6 (3): 248–53.

Swerdel, J. N., G. Hripcsak, and P. B. Ryan. 2019. “PheValuator: Development and Evaluation of a Phenotype Algorithm Evaluator.” J Biomed Inform, July, 103258.

Thompson, T., and M. A. Frable. 1993. “Drug-induced, life-threatening angioedema revisited.” Laryngoscope 103 (1 Pt 1): 10–12.

Tian, Y., M. J. Schuemie, and M. A. Suchard. 2018. “Evaluating large-scale propensity score performance through real-world and synthetic data experiments.” Int J Epidemiol 47 (6): 2005–14.

Toh, S., M. E. Reichman, M. Houstoun, M. Ross Southworth, X. Ding, A. F. Hernandez, M. Levenson, et al. 2012. “Comparative risk for angioedema associated with the use of drugs that target the renin-angiotensin-aldosterone system.” Arch. Intern. Med. 172 (20): 1582–9.

Vandenbroucke, J. P., and N. Pearce. 2012. “Case-control studies: basic concepts.” Int J Epidemiol 41 (5): 1480–9.

Vashisht, R., K. Jung, A. Schuler, J. M. Banda, R. W. Park, S. Jin, L. Li, et al. 2018. “Association of Hemoglobin A1c Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin: Analysis From the Observational Health Data Sciences and Informatics Initiative.” JAMA Netw Open 1 (4): e181755.

Voss, E. A., R. D. Boyce, P. B. Ryan, J. van der Lei, P. R. Rijnbeek, and M. J. Schuemie. 2016. “Accuracy of an Automated Knowledge Base for Identifying Drug Adverse Reactions.” J Biomed Inform, December.

Voss, E. A., Q. Ma, and P. B. Ryan. 2015. “The impact of standardizing the definition of visits on the consistency of multi-database observational health research.” BMC Med Res Methodol 15 (March): 13.

Voss, E. A., R. Makadia, A. Matcho, Q. Ma, C. Knoll, M. Schuemie, F. J. DeFalco, A. Londhe, V. Zhu, and P. B. Ryan. 2015. “Feasibility and utility of applications of the common data model to multiple, disparate observational health databases.” J Am Med Inform Assoc 22 (3): 553–64.

Walker, Alexander M, Amanda R Patrick, Michael S Lauer, Mark C Hornbrook, Matthew G Marin, Richard Platt, Véronique L Roger, Paul Stang, and Sebastian Schneeweiss. 2013. “A Tool for Assessing the Feasibility of Comparative Effectiveness Research.” Comp Eff Res 3: 11–20.

Wang, Y., M. Desai, P. B. Ryan, F. J. DeFalco, M. J. Schuemie, P. E. Stang, J. A. Berlin, and Z. Yuan. 2017. “Incidence of diabetic ketoacidosis among patients with type 2 diabetes mellitus treated with SGLT2 inhibitors and other antihyperglycemic agents.” Diabetes Res. Clin. Pract. 128 (June): 83–90.

Weinstein, R. B., P. Ryan, J. A. Berlin, A. Matcho, M. Schuemie, J. Swerdel, K. Patel, and D. Fife. 2017. “Channeling in the Use of Nonprescription Paracetamol and Ibuprofen in an Electronic Medical Records Database: Evidence and Implications.” Drug Saf 40 (12): 1279–92.

Weiskopf, Nicole Gray, and Chunhua Weng. 2013. “Methods and Dimensions of Electronic Health Record Data Quality Assessment: Enabling Reuse for Clinical Research.” Journal of the American Medical Informatics Association: JAMIA 20 (1): 144–51. https://doi.org/10.1136/amiajnl-2011-000681.

Whelton, P. K., R. M. Carey, W. S. Aronow, D. E. Casey, K. J. Collins, C. Dennison Himmelfarb, S. M. DePalma, et al. 2018. “2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.” Circulation 138 (17): e426–e483.

Whitaker, H. J., C. P. Farrington, B. Spiessens, and P. Musonda. 2006. “Tutorial in biostatistics: the self-controlled case series method.” Stat Med 25 (10): 1768–97.

Who, A. 2013. “Global Brief on Hypertension.” World Health Organization. https://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/.

Wickham, Hadley. 2015. R Packages. 1st ed. O’Reilly Media, Inc.

Wikipedia. 2019a. “Open science — Wikipedia, the Free Encyclopedia.” http://en.wikipedia.org/w/index.php?title=Open%20science&oldid=900178688.

———. 2019b. “Science 2.0 — Wikipedia, the Free Encyclopedia.” http://en.wikipedia.org/w/index.php?title=Science%202.0&oldid=887565958.

Wikiquote. 2019. “Ronald Fisher — Wikiquote,” \url{https://en.wikiquote.org/w/index.php?title=Ronald_Fisher&oldid=2638030}.

Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, et al. 2016. “The FAIR Guiding Principles for scientific data management and stewardship.” Sci Data 3 (March): 160018.

Yoon, D., E. K. Ahn, M. Y. Park, S. Y. Cho, P. Ryan, M. J. Schuemie, D. Shin, H. Park, and R. W. Park. 2016. “Conversion and Data Quality Assessment of Electronic Health Record Data at a Korean Tertiary Teaching Hospital to a Common Data Model for Distributed Network Research.” Healthc Inform Res 22 (1): 54–58.

Yuan, Z., F. J. DeFalco, P. B. Ryan, M. J. Schuemie, P. E. Stang, J. A. Berlin, M. Desai, and N. Rosenthal. 2018. “Risk of lower extremity amputations in people with type 2 diabetes mellitus treated with sodium-glucose co-transporter-2 inhibitors in the USA: A retrospective cohort study.” Diabetes Obes Metab 20 (3): 582–89.

Zaadstra, B. M., A. M. Chorus, S. van Buuren, H. Kalsbeek, and J. M. van Noort. 2008. “Selective association of multiple sclerosis with infectious mononucleosis.” Mult. Scler. 14 (3): 307–13.

Zaman, M. A., S. Oparil, and D. A. Calhoun. 2002. “Drugs targeting the renin-angiotensin-aldosterone system.” Nat Rev Drug Discov 1 (8): 621–36.


  1. https://www.ohdsi.org/who-we-are/collaborators/↩︎

  2. https://github.com/OHDSI↩︎

  3. http://forum.ohdsi.org↩︎

  4. https://www.ohdsi-europe.org/↩︎

  5. http://forums.ohdsi.org/c/For-collaborators-wishing-to-communicate-in-Korean↩︎

  6. https://ohdsichina.org/↩︎

  7. https://www.ohdsi.org/wp-content/uploads/2014/07/ARM-OHDSI_Duke.pdf↩︎

  8. https://www.ehden.eu/webinars/↩︎

  9. https://www.nature.com/collections/prbfkwmwvz↩︎

  10. https://youtu.be/X5yuoJoL6xs↩︎

  11. https://www.ema.europa.eu/en/events/common-data-model-europe-why-which-how↩︎

  12. https://forums.ohdsi.org↩︎

  13. https://www.ohdsi.org/web/wiki↩︎

  14. https://www.ohdsi.org/web/wiki/doku.php?id=projects:overview↩︎

  15. https://github.com/ohdsi↩︎

  16. https://github.com/OHDSI/TheBookOfOhdsi↩︎

  17. https://emif-catalogue.eu↩︎

  18. https://github.com/OHDSI/CommonDataModel/wiki↩︎

  19. https://github.com/OHDSI/CommonDataModel/wiki↩︎

  20. http://athena.ohdsi.org/↩︎

  21. http://atlas-demo.ohdsi.org↩︎

  22. https://github.com/OHDSI/Vocabulary-v5.0↩︎

  23. https://forums.ohdsi.org↩︎

  24. https://github.com/OHDSI/CommonDataModel/issues↩︎

  25. http://athena.ohdsi.org↩︎

  26. https://www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:mapping↩︎

  27. https://www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary↩︎

  28. http://athena.ohdsi.org/↩︎

  29. http://atlas-demo.ohdsi.org↩︎

  30. https://github.com/OHDSI/WhiteRabbit.↩︎

  31. SyntheaTM is a patient generator that aims to model real patients. Data are created based on parameters passed to the application.The structure of the data can be found here: https://github.com/synthetichealth/synthea/wiki.↩︎

  32. https://ohdsi.github.io/ETL-Synthea/↩︎

  33. https://translate.google.com/↩︎

  34. https://github.com/OHDSI/Usagi↩︎

  35. https://github.com/OHDSI/CommonDataModel/wiki].↩︎

  36. https://github.com/OHDSI/Themis↩︎

  37. http://forums.ohdsi.org/↩︎

  38. https://forums.ohdsi.org/c/implementers↩︎

  39. http://data.ohdsi.org/SystematicEvidence/↩︎

  40. http://www.ohdsi.org/web/atlas↩︎

  41. https://github.com/OHDSI/WebAPI/wiki/Security-Configuration↩︎

  42. https://github.com/OHDSI/ATLAS/wiki↩︎

  43. https://github.com/OHDSI/Atlas/wiki/Atlas-Setup-Guide↩︎

  44. https://github.com/OHDSI/WebAPI/wiki/WebAPI-Installation-Guide↩︎

  45. https://ohdsi.github.io/MethodsLibrary↩︎

  46. https://ohdsi.github.io/CohortMethod/articles/MultipleAnalyses.html↩︎

  47. https://github.com/OHDSI/Broadsea↩︎

  48. https://www.docker.com/↩︎

  49. https://github.com/OHDSI/OHDSI-in-a-Box↩︎

  50. https://github.com/OHDSI/OHDSIonAWS↩︎

  51. http://data.ohdsi.org/SqlDeveloper/↩︎

  52. http://data.ohdsi.org/QueryLibrary↩︎

  53. https://github.com/OHDSI/QueryLibrary↩︎

  54. https://github.com/OHDSI/Aphrodite↩︎

  55. https://www.ohdsi.org/web/wiki/doku.php?id=projects:workgroups:gold-library-wg↩︎

  56. https://www.equator-network.org/reporting-guidelines/tripod-statement/↩︎

  57. https://github.com/OHDSI/Vocabulary-v5.0/issues↩︎

  58. https://github.com/OHDSI/PheValuator↩︎

  59. https://github.com/OHDSI/CohortMethod/issues↩︎

  60. http://forums.ohdsi.org/↩︎

  61. https://ohdsi.github.io/MethodsLibrary/↩︎

  62. https://github.com/↩︎

  63. http://data.ohdsi.org/MethodEvalViewer/↩︎

  64. http://jane.biosemantics.org/↩︎

  65. http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html↩︎